Scanning the Internet for Liveness

Presented by: Shehar Bano
Research Scientist (Nivi, Facebook)
bano@fb.com @thatBano

Paper pdf:
ACM SIGCOMM CCR 2018

(*) This work was carried out while working at UCL and Cambridge University
Internet Scanning

- A key technique to measure the Internet at scale

- Diverse applications:
 - Address space utilization
 - Host reachability
 - Topology
 - Service availability
 - Security vulnerabilities
 - Service discrimination
IP Liveness

- Does a target IP address respond to a probe packet?
IP Liveness

- Does a target IP address respond to a probe packet?

- Key Questions:
 - What type of probe packets should we send if we, for example, want to maximize the responding host population?
IP Liveness

• Does a target IP address respond to a probe packet?

• Key Questions:
 • What type of probe packets should we send if we, for example, want to maximize the responding host population?
 • What type of responses can we expect and which factors determine such responses?
IP Liveness

• Does a target IP address respond to a probe packet?

• Key Questions:
 • What type of probe packets should we send if we, for example, want to maximize the responding host population?
 • What type of responses can we expect and which factors determine such responses?
 • What degree of consistency can we expect when probing the same host with different probe packets?
Challenges

- Missing a systematic framework that allows us to understand IP liveness and, how it manifests in the form of host replies to active probing
Challenges

- Missing a systematic framework that allows us to understand IP liveness and, how it manifests in the form of host replies to active probing

- Depends on multiple factors:
 - How the scan was conducted
Challenges

- Missing a systematic framework that allows us to understand IP liveness and, how it manifests in the form of host replies to active probing

- Depends on multiple factors:
 - How the scan was conducted
 - How different protocols interact
Challenges

• Missing a systematic framework that allows us to understand IP liveness and, how it manifests in the form of host replies to active probing

• Depends on multiple factors:
 • How the scan was conducted
 • How different protocols interact
 • Filtering policies near the target IP
Challenges

• Missing a systematic framework that allows us to understand IP liveness and, how it manifests in the form of host replies to active probing

• Depends on multiple factors:
 • How the scan was conducted
 • How different protocols interact
 • Filtering policies near the target IP
 • Temporal churn in IP responsiveness
Contributions

• Taxonomy of Liveness

• Methodology for systematically inferring IP liveness by performing Internet-wide scans concurrently across a set of different protocols at various layers (ICMP, TCP, UDP)

• Analysis of gathered data to present an in-depth view of liveness
Roadmap

1. Taxonomy
2. Scan Methodology
3. Characterization of IP Liveness
Taxonomy: Network Layer

Network Layer Dark
IP-1

TCP SYN (port 80) → Network Layer Alive
ICMP Error (from IP-2) → Network Layer Alive
Taxonomy: Network Layer

Network Layer Alive

TCP SYN (port 80)

TCP SYN-ACK
Taxonomy: Transport Layer (TCP)

UDP
probe type?
TCP
TCP reply?
TCP Syn Ack
Transport Layer Active

IP-1
Transport Layer Active
TCP SYN (port 80)
TCP RST
Taxonomy: Transport Layer (TCP)

TCP SYN (port 80) -> Transport Layer Alive

IP-1

TCP SYN-ACK
Taxonomy: Application Layer

Application Layer Active

HTTP GET

IP-1
Taxonomy: Application Layer

Application Layer Alive

HTTP GET

IP-1

HTTP 200 OK
Taxonomy
Roadmap

.1. Taxonomy

.2. Scan Methodology

.3. Characterization of IP Liveness
Scan Methodology

• 8 concurrent scans:
 • ICMP Echo scan
 • TCP Syn scans: Port 22 (SSH), 23 (Telnet), 80 (HTTP), 443 (HTTPS), and 7547 (CPE WAN Management Protocol, CWMP)
 • UDP-based applications: DNS and NTP

• ZMap (scan), SiLK (data analysis)
Scan Methodology: Considerations

• Temporal churn: Simultaneous scans
Scan Methodology: Considerations

- Temporal churn: Simultaneous scans
- Reply capture completeness: Record both positive and negative replies
Scan Methodology: Considerations

- Temporal churn: Simultaneous scans
- Reply capture completeness: Record both positive and negative replies
- Packet loss mitigation:
 - Redundant probes
Scan Methodology: Considerations

- Temporal churn: Simultaneous scans
- Reply capture completeness: Record both positive and negative replies
- Packet loss mitigation:
 - Redundant probes
 - Delayed retransmissions
Scan Methodology

- 8 concurrent scans: ~24 hours, 2.3 TB data

- Overall, our scans recorded 487M network alive IPs out of 3.6B probed (IP_all)
Roadmap

.1. Taxonomy

.2. Scan Methodology

.3. Characterization of IP Liveness
Characterizing IP Liveness
Network Layer
What is the coverage of different probe types?

(a) Network layer alive IP addresses.
What is the coverage of different probe types?

ICMP Echo probes are most effective in discovering network active IPs (79% of IP_all), followed by TCP probes.
What is the coverage of different probe types?

16% of IP_all can only exclusively be discovered via TCP, 2% can only be discovered via UDP probes.
What is the coverage of different probe types?

(b) Network layer alive /24 blocks.
What is the coverage of different probe types?

TCP scans show the highest coverage, discovering some 5M active /24 blocks, slightly more (≈ 3%) than ICMP Echo
What is the coverage of different probe responses?

(a) Breakdown of responses to scan types.
What is the coverage of different probe responses?

2.3% of IP_all are discoverable only through ICMP Error responses
Characterizing IP Liveness
Transport Layer
How does the probed port affect the responsive population?

(a) TCP stack completeness/consistency.
How does the probed port affect the responsive population?

Only 24% of active hosts respond to probe packets on all five ports (potentially due to firewalling and/or filtering)
What is the coverage by probe response type?

(b) Breakdown of transport layer responses.
What is the coverage by probe response type?

11.5% of all TCP activity can exclusively be found via CWMP. SSH, HTTP, and HTTPS provide unique coverage of 3–6% of active IPs.
Characterizing IP Liveness
Cross-protocol
What is conditional activity per probe type?

* For ICMP, we consider network-layer liveness
What is conditional activity per probe type?

<table>
<thead>
<tr>
<th>Service</th>
<th>NTP</th>
<th>DNS</th>
<th>TELNET</th>
<th>CWMP</th>
<th>ICMP</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>0.28</td>
<td>0.26</td>
<td>0.28</td>
<td>0.33</td>
<td>1</td>
</tr>
<tr>
<td></td>
<td>0.45</td>
<td>0.44</td>
<td>0.61</td>
<td>0.56</td>
<td>0.74</td>
</tr>
<tr>
<td></td>
<td>0.57</td>
<td>0.5</td>
<td>0.74</td>
<td>0.73</td>
<td>0.74</td>
</tr>
<tr>
<td></td>
<td>0.47</td>
<td>0.44</td>
<td>0.63</td>
<td>0.62</td>
<td>0.73</td>
</tr>
<tr>
<td></td>
<td>0.51</td>
<td>0.46</td>
<td>0.64</td>
<td>1</td>
<td>0.73</td>
</tr>
<tr>
<td></td>
<td>0.59</td>
<td>0.53</td>
<td>1</td>
<td>0.79</td>
<td>0.88</td>
</tr>
<tr>
<td></td>
<td>0.76</td>
<td>0.71</td>
<td>0.66</td>
<td>0.69</td>
<td>0.87</td>
</tr>
<tr>
<td></td>
<td>1</td>
<td></td>
<td>0.68</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

A significant fraction of transport active hosts (26% on average for TCP services and 12% for UDP) cannot be discovered via ICMP.
What is conditional activity per probe type?

If a given host is active for Telnet, then with high probability (>=0.9), it is active per SSH and HTTPS.

* For ICMP, we consider network-layer liveness
What is conditional activity per probe type?

<table>
<thead>
<tr>
<th>Activity for</th>
<th>NTP</th>
<th>DNS</th>
<th>TELNET</th>
</tr>
</thead>
<tbody>
<tr>
<td>NTP</td>
<td>0.28</td>
<td>0.45</td>
<td>0.57</td>
</tr>
<tr>
<td>DNS</td>
<td>0.26</td>
<td>0.44</td>
<td>0.5</td>
</tr>
<tr>
<td>TELNET</td>
<td>0.28</td>
<td>0.61</td>
<td>0.74</td>
</tr>
</tbody>
</table>

For CWMP only 56% of active hosts respond to HTTP probes, indicating an underlying filtering pattern of the CWMP-active population.

For ICMP, we consider network-layer liveness.
Conclusion

• Comprehensive and least noisy picture of the state of Internet liveness
Conclusion

• Comprehensive and least noisy picture of the state of Internet liveness

• The taxonomy can serve as a basis for designing and executing future measurement studies, when it comes to decisions such as:
 • What type of probe packets should be employed?
Conclusion

• Comprehensive and least noisy picture of the state of Internet liveness
• The taxonomy can serve as a basis for designing and executing future measurement studies, when it comes to decisions such as:
 • What type of probe packets should be employed?
 • What type of responses should be captured?
Conclusion

- Comprehensive and least noisy picture of the state of Internet liveness
- The taxonomy can serve as a basis for designing and executing future measurement studies, when it comes to decisions such as:
 - What type of probe packets should be employed?
 - What type of responses should be captured?
 - How to interpret responses?
Conclusion

- Comprehensive and least noisy picture of the state of Internet liveness
- The taxonomy can serve as a basis for designing and executing future measurement studies, when it comes to decisions such as:
 - What type of probe packets should be employed?
 - What type of responses should be captured?
 - How to interpret responses?
 - Whether it is appropriate to use the output of one scan as input for subsequent measurements?