Analyzing Third Party Service Dependencies in Modern Web Services: Have We Learned from the Mirai-Dyn Incident?

Aqsa Kashaf, Vyas Sekar, Yuvraj Agarwal
Carnegie Mellon University
Mirai-Dyn Attack 2016

This site can’t be reached

twitter.com’s server DNS address could not be found.

Try running Network Diagnostics.

DNS_PROBE_FINISHED_NXDOMAIN
Mirai-Dyn Attack 2016

- 178,000 domains affected in total
- Tens of millions of users affected
How was it possible to take all of these websites down?
Mirai-Dyn Attack 2016

Client Machine → netflix.com? → 34.194.68.3 → Resolver → netflix.com? → 34.194.68.3 → Authoritative Server (Dyn)

Insight: Many websites relied on the same 3rd Party DNS provider (Dyn)
Motivating Questions for Our Work

• How prevalent are third party dependencies?
 Methodology: Analysis on Alexa Top 100K websites

• Are there any indirect dependencies between websites and third-party providers?
 Methodology: Analysis on inter-service dependencies

• How did the world change after the Dyn Incident?
 Methodology: Comparison analysis on Alexa Top 100K sites in 2016 vs. 2020
Outline

• Measurement Methodology
 • Findings
 • Recommendations
 • Limitations
• Conclusion
Methodology: What services to measure?

Life Cycle of a Web Request
• Domain Name System (DNS)

For example, AWS DNS, Dyn.
Methodology: What services to measure?

Life Cycle of a Web Request

- Domain Name System (DNS)
- Certificate Validation by CA

For example, DigiCert, Let's Encrypt.
Methodology: What services to measure?

Life Cycle of a Web Request

- Domain Name System (DNS)
- Certificate Validation by CA
- Content Delivery Network (CDN)

For example, Akamai, CloudFlare
Methodology: What features to measure?

• Third Party Dependency
• Indirect Dependency
• Critical Dependency
 • No Redundancy in DNS and CDN provisioning
 • No OCSP stapling in certificate validation

Indirect Dependency
Measuring 3rd party DNS dependency

- live.com
- *.azure-dns.com
- *.o365filtering.com

Q1. Are these third party or private?
Q2. Do these belong to the same entity?
Identifying 3rd party DNS dependency: Prior efforts are error prone

- Using SLD + TLD Matching

 - www.google.com
 - www.youtube.com

- Using SOA Records Matching

 - www.youtube.com
 - www.twitter.com
Identifying 3rd party DNS dependency: Our Approach

For all \((website, NS)\) pairs:

- SLD + TLD match
- \(NS \in\) Subject Alternate Names (SAN) list
- SOA do no match
- \(Concentration(NS) > 50\)

We identify 10K Third Party DNS Providers
Measuring 3rd Party CDN Dependency

- Use TLD, SOA, SAN of embedded links to identify internal resources
- Use TLD, SOA, SAN of CNAMEs used by CDNs to identify 3rd party CDNs
- We identify 86 Third party CDNs
Measuring 3rd party CA dependency

- We identify 59 third party CAs
Outline

• Measurement Methodology
• Findings
• Recommendations
• Limitations
• Conclusion
Q1: How prevalent are third-party dependencies?
Third-Party Dependencies are Highly Prevalent

89% of the top-100K websites critically depend on third-party DNS, CDN, or CA providers.
Third-Party Dependencies Higher for Less Popular Websites

Popular websites care more about availability.
Concentration of DNS Providers

3 (out of 10K) DNS providers critically serve ~40% of the top-100K websites
Concentration of CDN Providers

3 (out of 86) CDN providers critically serve ~60% of the top-100K websites using CDN.
Concentration of CA Providers

3 (out of 59) CAs critically serve ~60% of the top-100K websites that support HTTPS
Takeaway

• Third party critical dependencies are highly prevalent.
• Third party services are highly concentrated.

Implications:
• 89% of the websites are vulnerable to Dyn like incidents
• A single third-party service provider can affect ~25% of the top 100K websites
Q2: Are there any indirect dependencies between websites and their third-party providers?
Third-party dependencies are also prevalent among service providers.
Due to inter-service critical dependencies, websites have indirect dependencies on service providers.
Indirect Dependencies Amplify Concentration

Indirect Dependencies further amplify provider concentration
Takeaway

• Third party inter-service critical dependencies are also widespread
• Inter-service critical dependencies amplify the concentration of service providers

Implications:
• Single points of failure on the internet are amplified by inter-service dependencies
• A single service provider can impact 37% of the top 100K websites.
Q3: How did the world change after the Dyn incident in 2016?
Critical Dependency of Websites (2016 to 2020)

+4.7% 0% -0.2%

website → DNS website → CDN website → CA

No improvement in the prevalence of third-party dependency. Critical dependency increased in DNS.
Critical dependency decreased in service providers
Change in Concentration of DNS Providers

Single-points-of-failure got bigger in DNS and CA!
Takeaway

• No significant change in the prevalence of third-party critical dependencies in websites

• Inter-service critical dependencies on DNS decreased in 2020.

• Concentration of DNS and CA providers increased in 2020.

Implications:

• No increasing trend in redundancy.

• Single points of failure in the internet got bigger in 2020 vs. 2016
Outline

• Measurement Methodology

• Findings

• Recommendations

• Limitations

• Conclusion
Our Recommendations

Websites
- Redundancy when using third party providers
- Understand their indirect dependencies

Service Providers
- Support and encourage redundancy
- Be careful about their inter-service dependencies
- Be more transparent about attacks
Outline

- Measurement Methodology
- Findings
- Recommendations
- Limitations
- Conclusion
Limitations

• Measurements from a single vantage point
 • May miss region specific dependencies

• Analyze dependencies on landing pages only
 • May miss dependencies that manifest deeper

• Do not look at physical and network dependencies
 • For example, routing, hosting etc.
Conclusion

• DDoS attack on Dyn exposed the fragility of the Web due to dependencies

• Our work: Analyze third-party and inter-service dependencies

• Key Findings:

 • **Prevalence of third-party dependency:**
 89% of top 100K websites are critically dependent
 An attack on a single provider can take down ~30% of the websites

 • **Impact of indirect dependencies:**
 ~23X amplification in provider concentration

 • **Change after the Dyn Incident:**
 No significant change in website dependencies

Code: github.com/AqsaKashaf/Analyzing-Third-party-Dependencies.git