
Composition of SDN applications: Options/challenges for
real implementations

Arne Schwabe
Paderborn University

Warburger Straße 100
33098 Paderborn, Germany

arne.schwabe@uni-
paderborn.de

Pedro A. Aranda
Gutiérrez

Telefónica, I+D
Zurbarán, 12

28006 Madrid, Spain
pedroa.aranda@telefonica.com

Holger Karl
Paderborn University

Warburger Straße 100
33098 Paderborn, Germany

holger.karl@uni-
paderborn.de

ABSTRACT
In this paper we define the notion of composition for software-
defined networking applications and show the theoretical
and practical approaches to composition in software-defined
networks and explain the challenges associated with it. We
explore the feasibility of OpenFlow as an Application Pro-
gramming Interface (API) for a composition engine and ar-
gue that its design as Southbound controller interface makes
it unsuitable for this task.

CCS Concepts
•Networks → Routing protocols; Network protocol de-
sign;

Keywords
SDN; composition; OpenFlow; conflict resolution

1. INTRODUCTION
Software-defined networking (SDN) promises higher flexi-

bility in the way networks are managed. However, by intro-
ducing software paradigms in networks, we also introduce
the complexity of modern software systems in them. For
example, the question of interfaces to control functions has
to be addressed. Such control functions can be realized by
agents – applications that access network devices – as pro-
posed by Interface to the Routing System (i2rs) and other
Working Groups (WGs) in the IETF. These architectures
foresee multiple applications accessing the same device. Like
in concurrent programming, a series of issues related with
multiple access arises, including situations where several ap-
plications produce “conflicting” configurations. Current ap-
proaches to the “conflict” suggest that a generalized treat-
ment is not possible. In this paper we provide a new frame-
work to describe the interactions between applications and
the network based on transactions and examine what ap-
proaches to composition may make the problem tractable.

Permission to make digital or hard copies of all or part of this work for personal or
classroom use is granted without fee provided that copies are not made or distributed
for profit or commercial advantage and that copies bear this notice and the full citation
on the first page. Copyrights for components of this work owned by others than the
author(s) must be honored. Abstracting with credit is permitted. To copy otherwise, or
republish, to post on servers or to redistribute to lists, requires prior specific permission
and/or a fee. Request permissions from permissions@acm.org.

ANRW ’16, July 16 2016, Berlin, Germany
c© 2016 Copyright held by the owner/author(s). Publication rights licensed to ACM.

ISBN 978-1-4503-4443-2/16/07. . . $15.00

DOI: http://dx.doi.org/10.1145/2959424.2959436

We start by giving definitions in the next section and then
explain the different approaches to composition in software-
defined networks in Section 3. We will continue by present-
ing the general strategies to handle and implement compo-
sition in Section 4. We will look into the specific challenges
of using OpenFlow in composition in Section 5 and how we
addressed them in our implementation in following section.
We look at related work that discusses composition in Sec-
tion 7 and provide in Section 8 the conclusions and sketch
future work.

2. DEFINITIONS
For the scope of this paper, a software-defined network

is a collection of interconnected nodes (switches) forming
a graph G = V (V,E), where E describes the connectivity
between the switches. We define the state Nv of a node as
the state of its Forwarding Information Base (FIB). A FIB
entry is defined as tuple (p,m, i) specifying a priority, the
packets to match and a list of instructions i.1 The network
state N is then defined as the collection of all node states

N = {Nv | v ∈ V }

The network state can be changed by a command C. A
command is a sequence of basic commands C = [c1, c2, . . .]
with cj ∈ {Finst, Fdel} that modify the FIB of a switch:

• Finst = (v, p,m, i): Install a FIB entry on node v with
priority p, match m and list of instructions i.

• Fdel = (v, p,m, i): Remove the FIB entry that was
installed by Finst(v, p,m, i)

We define the function a : N×C → N as the function that
applies a network command to a network state and produces
the new network state:

a(N, [c1, . . . , ck]) = a(a(N, c1), [c2, . . . , ck])

a(N, cj) =

{
Add (p,m,i) at v if cj = Finst

Remove (p,m,i) at v if cj = Fdel

for a basic command cj = (p,m, i, v).
In a network, these commands are generated by a control

application or module Mj . We define a network module as

1A typical FIB entry used in IP forwarding is (100,
if {ingress_port==*, dst_ip∈{192.168.100.0/24}},
set {src_mac 00:00:00:ab:cd:ef, dst_mac
aa:bb:cc:00:11:22, egress_port 3}).

a state-based function Mj that reacts to an event ev with a
network command (and possibly modifies its internal state):

Mj : ev → C

Examples for network events are the arrival of certain
packet types (like ARP request) or the arrival of a new flow
currently not handled by the FIB.

3. TYPES OF COMPOSITION
The goal of composition is to run multiple modules on

the same physical network and incorporate all their network
commands into the network state.

3.1 Single module without composition
We start with the simplest case of a single module M1. All

commands are simply forwarded and applied to the network
and the resulting network state N ′ is:

N ′ = a(N,M1(ev))

3.2 Multiple modules without composition
A typical SDN controller runs multiple SDN modules and,

commonly, all outputs of these modules are applied to the
network without any explicit form of composition. In this
case, each command is applied to the network as it happens,
just like in the single module scenario. The resulting network
state N (k) for multiple applications looks like this:

N ′ = a(N,M1(ev))

N ′′ = a(N ′,M2(ev))

N (k) = a(N (k−1),Mk(ev))

The simplicity of this approach is also its biggest prob-
lem. Since every network command is applied when it hap-
pens, the results depends on the order of transaction ap-
plied, a(a(N,M1(ev)),M2(ev) is not necessarily the same
as a(a(N,M2(ev),M1(ev)). But cases might occur in a non-
deterministic fashion in the same network, for example caused
by differences in execution speed of modules M1 and M2.

Another problem are transient states. In the time after
the first module has answered but not the second, the tran-
sient network state N ′ is active. This transient is problem-
atic since it only reflects the output of first module but not
the others. These ill-specified, non-deterministic transient
networks states are usually undesirable and constitute the
main reason to explicitly define a composition logic.

3.3 Multiple modules with harmonizing
The output of the multiple modules might contain con-

flicting or overlapping commands. For example, two mod-
ules might instruct one switch to deal with the name packet
by either forwarding or dropping it, at the same priority (see
Section 4 for details). To deal with such conflicts, a stateful
function

h : command→ command

to modify the commands can be used. An example for such a
harmonizing function is a network hypervisor. The network
state can be expressed as:

N ′ = a(N,h(M1(ev)))

...

N (k) = a(N (k−1), h(Mk(ev)))

When the harmonizing function h is the identity we get the
same result as in the previous subsection.

This harmonizing function can deal with some problems,
but intermediate, hard-to-predict network states still exist.
It is hence not a satisfying solution.

3.4 Parallel composition
To overcome the problem with transient state and vary-

ing order of applied results, parallel composition collects
all commands and then resolves all conflicts betweens these
commands, composing the results into a single command to
be applied to the network. This is done by a special resolv-
ing function r that gets all command outputs and generates
a conflict-free version that can be applied to the network.

r : command× . . .× command→ command

The new network state N ′ can then be expressed as:

N ′ = a(N, r(M1(ev),M2(ev), . . . ,Mk(ev)))

This composition requires all command outputs of an event
to be available; it must also be possible to tie a command
output of a module to a specific event (necessary when mul-
tiple events are passed to a module before commands have
been produced, compare challenges of OpenFlow, Section 5).

A big difference between the parallel composition and the
harmonizing composition is that the parallel composition is
reactive, i.e. it depends on the fact that the network com-
mands generated by the modules are a response to a network
event. The harmonizing composition works without this as-
sumption and can also be applied to network commands that
are sent proactively without an event (C = Mj(∅)).

3.5 Serial composition
For the serial composition, one module is fed the output

of a previous module. The desired network state of the first
module only exists as an input to the second module.

To really support this behavior, we need to change the
signature of the modules. They must accept a command as
an additional input:

M : event× command→ command

With that, we can define a new function

M12 : ev 7→ (M1 ◦M2)(ev, ∅)

and use that in place of a normal module function (in the
harmonizing composition or parallel composition). For ex-
ample, if only the serially composed function is used, the
new network state will be:

N ′ = a(N,M12(ev))

= a(N, (M1 ◦M2)(ev, ∅)
= a(N,M2(ev,M1(ev, ∅)))

Chaining more than two network modules, e.g. M1 ◦M2 ◦
M3, is defined by obvious induction.

Network programming languages like Pyretic [1] also de-
fine their function signature to have symmetrical input and
output: f : policy→ policy.

The main distinction of the serial is that the last mod-
ule in the composition chain can provide consistent network
commands. It also allows to a module to incorporate the
decisions of a previous module into its own decision. The
downside of the serial composition is however that module

Physical Switch

Emulated virtual topology

1

2
3 4 5

6

1
2

3 4 5
6

1

2
3 4 5

6

1,2,3,4,5,6Module A Module B

Figure 1: Using a virtual overlay network for com-
position of module A and B

need to explicitly designed and programmed to be used in
this way. We will take a look how useful serial composition
is with existing module in the next section.

3.6 Approximate serial composition
As most network modules are not designed for serial com-

position (i.e., they do not accept a command as an input),
we define an approximate way to do serial composition with
existing network modules. In this scenario, we need to in-
corporate as much as possible from the network command
into the input event of the following module by a function

α : Ñ × command→ event

where Ñ is the approximated network state resulting from
applying the output of the first function to the current net-
work state. This approximated state is a representation of
the state in the controller; its manipulation does not involve
manipulation of actual state in network devices.

What can be incorporated into the new event is often very
limited as we will see in Section 5. The new network state
using this function can be expressed as:

N ′ = a(N, (M1◦̃M2)(ev))

= a(N,M2(α(Ñ ,M1(ev))))

Similarly, chaining three modules in an approximate serial
composition works as well:

N ′ = a(N, (M1◦̃M2◦̃M3)(ev)

= a(N,M3(α(
˜̃
N,α(Ñ ,M1(ev)))))

where
˜̃
N is the approximated network state resulting from

applying M1(ev) to Ñ .

Using an Overlays for approximate serial composition.

A conceivable variant to implement this approximation of
the network state and the function α is to use an overlay
of virtual switches to a real network as shown in Figure 1:
For each physical switch, a number of virtual switches cor-
responding to the number of modules is emulated. Each
module is assigned to one virtual switch. The approximated
network states are the state of the virtual switches and the
function α would“process” the packet that the module sends

Monitoring Server

IDS Firewall NAT

External
Network

Backend Servers

Figure 2: Typical order of IDS and Firewall and
NAT load balancer middle boxes in a traditional net-
work

new
flow accept

copy to
monitor server

destination
backend 7

r
accept,

destination
backend 7,

copy to
monitoring

IDS

FW

NAT

Figure 3: Parallel composition of IDS, FW and NAT
load-balancer modules

to its virtual switch output ports as event for the next mod-
ule.

3.7 Composition and order of middle boxes
A common misconception is that the placement of middle-

boxes (a networking device that transforms, inspects, filters,
or otherwise manipulates forwarded traffic) always carries
over to the composition order. If multiple middleboxes, for
example a firewall and a monitoring/IDS system should act
on all the same traffic, these boxes are setup in sequence to
pass traffic to box after another. Figure 2 show an example
of a traditional middle box setup with an IDS, a firewall and
a load balancer.

In stark contrast, for a composition the modules would be
typically setup in a parallel composition to allow all modules
to base their decisions on decide on the original input pack-
ets. The merging process of all the outputs will then give an
equivalent solution to the middle box solution. Fig 3 shows
the setup of Fig 2 implemented with parallel composition.

4. COMPOSITION STRATEGIES
For the “true” serial composition, the mechanics required

of the composition framework are simple and implemented
in the modules themselves. For the more challenging ap-
proximate serial composition we will discuss strategies in
the OpenFlow implementation section.

For the remainder of this section, we look at some general
composition strategies to implement the resolving function r
for parallel composition. We concentrate on resolving mul-
tiple flow install commands since it is the most interesting
composition part and the ideas used here can be used anal-
ogously for resolving other basic commands.

The idea here is to handle as much as possible in a gener-

alized way but allow to fall back to developer-specified logic
where a general approach cannot work. For this strategy,
the function r performs the following steps:

1. Check for syntactic and general conflicts

2. Check for developer-specific conflicts using user logic

3. If no conflicts detected, perform generic composition

4. If a generic composition is not possible, abort or call
developer-provided conflict resolution

The first step is to check for conflicts. If two commands
do not act on the same switch, they do not conflict. Also, if
one command has a higher priority than the other command,
the one with the higher priority wins. So from now on, we
will consider two FIB install commands that act on the same
switch and have the same priority.

Both basic commands c1 and c2 have a match m1 and m2,
which typically are not identical. Hence, we have three dif-
ferent matches to consider for the composition. The match
for packets matched only by m1∗ = m1 \m2, the analogues
match m2∗ = m2 \m1, and the match for packets that are
matched by m1 and m2: m12 = m1 ∩ m2. For the gener-
alized approach, we assume that network modules respond
to a new flow install with a FIB install command that also
matches the new flow. It directly follows that the common
match m12 is not empty and only for the common match
m12 we have instructions from both modules for the new
flow of the event. As an example, one module might want
to install policies per IP address while the other module in-
stalls policies per network. For the generalized approach, we
therefore opt to ignore the matches m2∗ and m1∗ and only
generate a new FIB install command for the composed rule
on m12. A new flow that falls under the match m1∗ or m2∗
will trigger a new flow event and we restart the composition
with its new flow event.

For the instruction list of the install command, the gen-
eral idea is to combine both instructions lists into one big
list of instructions. When combining these lists, we can en-
counter different conflicts in the combined list. We differen-
tiate these into semantic and syntactic conflicts. Syntactic
conflicts can be automatically detected, like two instructions
setting the same fields to two different values. As an exam-
ple, a misconfigured composition enables two load-balancing
modules and both try to rewrite the destination IP address
of a packet to two different server IP addresses. Different
Instructions can also be mutually exclusive, like removing
the VLAN tag and the same one changing the VLAN id. Or
dropping the packet and any other action that modifies the
packets. These syntactic conflicts can be detected by the
generalized approach.

Semantic conflicts, in contrast, are not automatically de-
tectable by a general approach but still cause problems. As-
sume again two load-balancing modules: the first module
tries to redirect to a different port but leaves the IP ad-
dress unchanged and the second module sets a different IP
destination address. Since no syntactic conflict exists, the
actions list can be merged and will redirect the packets to
an IP/port combination that will not work. The only way
to detect such conflicts is to call developer-provided logic.

5. COMPOSITION WITH OPENFLOW
OpenFlow is the most commonly used protocol used in

real-world deployment and a lot of existing application logic
is implemented using OpenFlow protocols. This makes Open-
Flow desirable as a protocol on top of composition and con-
flict resolution. On the other hand, OpenFlow itself was
never designed to used in a composition context. The im-
plicit assumption that there is only one entity controlling an
OpenFlow device2 makes its use problematic.

This problem is aggravated by the fact that OpenFlow
is not only used as a control protocol for switches as the
southbound interface. Instead, its semantic has also left its
mark on the design of northbound interfaces, which often
more or less directly mirror the OpenFlow semantics. In
this section, we will analyze the problems of OpenFlow in
composition and conflict detection and detail how and to
what degree they can be avoided and solved.

5.1 Definitions
We will briefly show the definition of the important packet

types in OpenFlow for composition:

Packet In The PACKET_IN, abbreviated PKT_IN, is the main
event in OpenFlow and usually signifies the arrival of a
new flow. Whenever a packet arrives at a switch that
is not handled by one of the FIB entries (or a FIB
entry explicitly states to generate a PKT_IN) a copy
of the packet and the meta information of the packet
(ingress port, etc.) are forwarded to the controller.

Flow Mod The FLOW_MOD, abbreviated FM, is the Open-
Flow command that is analogous to our FIB entry
install command Fi.

Packet Out The PACKET_OUT, abbreviated PKT_OUT, allows
an OpenFlow controller to craft and send a packet to
the network. A typical use case for this is to reply to
an ARP Request. The PKT_OUT consists of a packet
and action list that is identical in function and syntax
to the FM action list.

5.2 Multiple modules
The “multiple modules” approach without harmonization

(Section 3.2) is easy to support with OpenFlow. Adding a
harmonizing function (Section 3.3) is possible, but requires
to intercept FM commands before sending them to the net-
work. Depending on the specific controller architecture, this
is a more or less easy task. Correctly treating timeouts of
FIB entires is also not a trivial task. Hence, even the first
non-trivial composition approach is not entirely straightfor-
ward to support.

5.3 The run to completion problem
In the previous sections we defined the parallel composi-

tion to combine all commands triggered by the same net-
work event. The definition of network events in OpenFlow
is straightforward and consists of a small list of unsolicited
messages of which the most important one is the PKT_IN

event.
Unfortunately, in OpenFlow there is no relationship be-

tween a network event and the responses of a controller and

2OpenFlow does allows multiple connections per switch from
multiple hosts for load sharing/backup of a single (dis-
tributed) entity.

thus also no reliable way to tie the responses obtained from
a module to the original network events. PKT_OUTs may ref-
erence the original PKT_IN as optimization to avoid copying
the packet but this captures only a fraction of the PKT_OUTs.
Also, there is no way to tell if an OpenFlow module will
respond to an event at all.

Hence, the basic assumption of composition – actions can
be tied to events across multiple modules – is not guaranteed
by OpenFlow.

5.4 Parallel composition
If ignoring the (major) run-to-completion problem, im-

plementing a resolve function works as sketched in the last
section.

The PKT_OUTs that are also generated as port of the out-
put, a generalized solution is not possible since is standard
approach to combine two arbitrary Ethernet packets into
one. Here again either a user logic is needed or a simple
approach that prefers packets from one module and drops
packets of other modules if more than one packet out is
present.

5.5 Serial composition
With OpenFlow we can at best try to achieve approximate

serial composition – actual serial composition is impossible
as an OpenFlow-oriented northbound interface cannot ex-
press both events and commands as input.

The input event in OpenFlow is the PKT_IN. The goal is
to create a PKT_IN that carries as much information from the
outputs (PKT_OUT and FLOW_OUT) of the previous module as
possible.

The generated packets and functions involved in an Open-
Flow serial composition chain with two modules looks like
this:

PKT_IN0 →M1 → PKT_OUT1, FM1

→ α→ PKT_IN1

→M2 → PKT_OUT2, FM2

The meta-information part of the new PKT_IN1 (produced
by the network emulation function α) is a match that only
carries the input port and no other information. The input
port is usually the same as the input of the PKT_IN0 unless
an overlay composition is used in which case the input port
is the output port designated by the first module.

For the packet part we have two options: (1) Modify the
original packet of the original PKT_IN0 or (2) use the packet
of the PKT_OUT0 if there is any and fall back to the input or
stop the chain if there is none.

When choosing the first option and using the packet of
PKT_OUT1, we can assume that all actions are either already
applied or are in the action set of the packet out. As conse-
quence, we will ignore FM1 in this case. If we decide to use
the packet of the original packet of PKT_IN0, we can apply
the actions of FM1 to it and thus ignore PKT_OUT1. No matter
what option we choose, we always ignore a significant part
of M1 output.

In both cases we have to apply the instructions of the
PKT_OUT or FM to preserve as much information as possible.
Only the subset of instructions that mutates the packet itself
(like adding a vlan id) can be preserved. Everything that is
not directly related to the content of the packet cannot be
represented in the new packet, which includes instructions
like setting the output queue, rate limits, goto table x, etc.

The workaround to preserve the information contained in
instruction is to remember them and then merge/intersect
all actions from all modules of a sequential composition in
the last step. But this creates an unintuitive, difficult to
understand and predict hybrid between serial and parallel
composition.

In summary, all these problem with generating a new
PKT_IN make sequential composition in an OpenFlow only
usable in very limited circumstances.

In a wider sense, we can conclude that an OpenFlow-
oriented northbound interface is ill suited to support com-
position of control modules!

6. IMPLEMENTATION
The goal of the FP7 project NetIDE has been to im-

plement composition for SDN application while supporting
legacy controllers as much as possible. The NetIDE project
has focused on OpenFlow and tried to overcome or work
around the limitation of OpenFlow identified in the previ-
ous section.

In this project, we encountered many of the challenges de-
scribed so far and made a number of restrictions and proto-
col enhancements to obtain a practically usable composition.
We will give a short overview:

Intermediate Core.
In order not to modify legacy controllers, we collected all

necessary functions for composition in a “Core”. This core
intercepts, among others, FM messages before handing them
on to the actual network devices. Depending on which actual
controllers is used (e.g., ONOS, Floodlight, Ryu), the core
interacts with a controller-specific “backend” that realizes
the actual interception of messages; this allows the core to
stay controller-agnostic.

NetIDE protocol.
A custom protocol used between the core and the back-

ends. It carries additional messages as well as the normal
OpenFlow messages.

Fence messages.
To work around the “run to completion” problem (Sec-

tion 5.3), we introduce fence messages to signal the end of
a response to a network event.

Transaction Ids.
To be able to tie responses to a network event, we added

a transaction id field to the our protocol that tracks events
and their responses.

Concentrate on parallel composition.
Since serial composition semantics are difficult to define

and implement, the current implementation is focused on
parallel composition.

Restrict OpenFlow control module behaviour.
To allow all of the features to work, NetIDE imposes re-

striction on the modules’ use of OpenFlow. A module must
reply to events only and should not use proactive flows.

Modules also must not make assumption on the state of
the network, e.g., they need to always reply to PKT_IN and
must not assume that previously installed flow rules already

handle the flow.
For the serial composition we require always a PKT_OUT

and a FM as output of all but the last module in the chain.

7. RELATED WORK
The idea of module composition in software-defined net-

working (SDN) is not new and has been presented in various
forms. One of earliest form is FlowVisor[2], which partitions
the network in different slices and also OpenVirtex [3], which
improves on this approach. In our terminology, the slicing of
the network is a harmonizing function that avoids conflicts
by making the matches of all modules disjunct.

To focus on the composition itself, approaches like Fre-
nentic/Pyretic [4, 1] introduce a functional programming
language specifically aimed at SDN policy description. The
languages were carefully designed to allow parallel and se-
rial (sequential) composition on individual statements, for
example by choosing a function signature that has a policy
definition as input as well as output. This approach avoids
the challenges and incompatibilities we faced when trying to
use OpenFlow as basis for composition, but it pays the price
of mandating a new programming paradigm.

Using OpenFlow as API for the composition is proposed
by CoVisor [5]. CoVisor uses virtual switches to implement
the serial composition. The CoVisor paper, however, leaves
out many details how the challenges that we outlined here,
most importantly the run-to-completion problem, are solved
by CoVisor. Moreover, the available implementation of Co-
Visor only implements a very limited subset, namely a static
composition that gets all network commands at the start of
the program and thus avoid all the challenges with dynamic
events/network commands. It is hence difficult to ascertain
how CoVisor actually intends to address the difficult prob-
lems in composition.

Finally, the approaches used by SDN test tools such as
SOFT[6] and NICE [7] to detect bugs in controllers can also
be applied to enhance the semantic conflict detection.

8. CONCLUSIONS AND FUTURE WORK
Composition can be very useful tool if used in a restricted

environment. We have also shown that for composition to
work in a meaningful way, the underlying south-bound in-
terface (SBI) should be designed to support it. While Open-
Flow can be augmented and restricted to work for compo-
sition, doing so results in a customised protocol that, even
then, is still lacking several aspects. The most notable as-
pect is that the OpenFlow module will get no feedback from
composition about the conflict resolution result.

As a main conclusions, we point out that an interface be-
tween controllers and control modules that is oriented to-
wards OpenFlow is not suitable to support any but the most
trivial composition semantics. The challenge is to find an
interface that carries enough information (commands and
events in our parlance; policies in Frenetic lingo) between
modules, but hopefully without having to mandate its own
programming style as done by Frenetic/Pyretic.

To make practical progress, we are in contact with the i2rs
WG in the IETF. Potentially, this could lead to an inter-
face between modules and controllers that is better geared
towards supporting composition.

From a practical perspective, this paper and the imple-
mentation work in NetIDE concentrates on the parallel com-
position. However, there are situations where it is more ad-
visable to generate an initial configuration beforehand to put
network elements in a known state. This behavior is known
as proactive applications. This behavior can be supported
by either implementing a harmonizing approach for these
messages or treat the initial configuration of modules with
a special “initial” event.

9. ACKNOWLEDGMENTS
The work presented in this paper has been partially spon-

sored by the European Union through the FP7 project Ne-
tIDE, grant agreement 619543.

10. REFERENCES
[1] Joshua Reich, Christopher Monsanto, Nate Foster,

Jennifer Rexford, and David Walker. Modular SDN
Programming with Pyretic. USENIX ;login,
38(5):128–134, Oct. 2013.

[2] Rob Sherwood, Michael Chan, Adam Covington, Glen
Gibb, Mario Flajslik, Nikhil Handigol, Te-Yuan Huang,
Peyman Kazemian, Masayoshi Kobayashi, Jad Naous,
et al. Carving research slices out of your production
networks with OpenFlow. ACM SIGCOMM Computer
Communication Review, 40(1):129–130, 2010.

[3] Ali Al-Shabibi, Marc De Leenheer, Matteo Gerola,
Ayaka Koshibe, Guru Parulkar, Elio Salvadori, and Bill
Snow. OpenVirteX: Make your virtual SDNs
programmable. In Proceedings of the third workshop on
Hot topics in software defined networking, 2014.

[4] Nate Foster, Michael J. Freedman, Rob Harrison,
Jennifer Rexford, Matthew L. Meola, and David
Walker. Frenetic: A high-level language for openflow
networks. In Proceedings of the Workshop on
Programmable Routers for Extensible Services of
Tomorrow, 2010.

[5] Xin Jin, Jennifer Gossels, Jennifer Rexford, and David
Walker. Covisor: A compositional hypervisor for
software-defined networks. In 12th USENIX Symposium
on Networked Systems Design and Implementation
(NSDI 15), pages 87–101, Oakland, CA, May 2015.
USENIX Association.

[6] Maciej Kuzniar, Peter Peresini, Marco Canini, Daniele
Venzano, and Dejan Kostic. A SOFT way for OpenFlow
switch interoperability testing. In Proceedings of the 8th
international conference on Emerging networking
experiments and technologies, 2012.

[7] Marco Canini, Daniele Venzano, Peter Peresini, Dejan
Kostic, Jennifer Rexford, et al. A NICE Way to Test
OpenFlow Applications. In NSDI, 2012.

