
On the Cost of Using Happy Eyeballs for Transport
Protocol Selection

Giorgos Papastergiou†, Karl-Johan Grinnemo‡, Anna Brunstrom‡, David Ros†,
Michael Tüxen?, Naeem Khademi∗, Per Hurtig‡

†Simula Research Laboratory, ‡Karlstad University, ?Fachhochschule Münster, ∗University of Oslo

{gpapaste, dros}@simula.no, {karl-johan.grinnemo, anna.brunstrom,
per.hurtig}@kau.se, tuexen@fh-muenster.de, naeemk@ifi.uio.no

ABSTRACT
Concerns have been raised in the past several years that
introducing new transport protocols on the Internet has be-
come increasingly difficult, not least because there is no
agreed-upon way for a source end host to find out if a trans-
port protocol is supported all the way to a destination peer.
A solution to a similar problem—finding out support for
IPv6—has been proposed and is currently being deployed:
the Happy Eyeballs (HE) mechanism. HE has also been
proposed as an efficient way for an application to select
an appropriate transport protocol. Still, there are few, if
any, performance evaluations of transport HE. This paper
demonstrates that transport HE could indeed be a feasible
solution to the transport support problem. The paper evalu-
ates HE between TCP and SCTP using TLS encrypted and
unencrypted traffic, and shows that although there is indeed
a cost in terms of CPU load to introduce HE, the cost is rel-
atively small, especially in comparison with the cost of using
TLS encryption. Moreover, our results suggest that HE has
a marginal impact on memory usage. Finally, by introduc-
ing caching of previous connection attempts, the additional
cost of transport HE could be significantly reduced.

CCS Concepts
•Networks → Transport protocols; Network perfor-
mance evaluation;

Keywords
Transport-protocol selection, Happy Eyeballs, TCP, SCTP,
TLS, CPU load, memory usage.

1. INTRODUCTION
The deployment of new transport protocols on the Inter-

net is not a trivial task. Several hurdles have to be cleared
before a new transport can be used between an arbitrary

Permission to make digital or hard copies of all or part of this work for personal or
classroom use is granted without fee provided that copies are not made or distributed
for profit or commercial advantage and that copies bear this notice and the full citation
on the first page. Copyrights for components of this work owned by others than the
author(s) must be honored. Abstracting with credit is permitted. To copy otherwise, or
republish, to post on servers or to redistribute to lists, requires prior specific permission
and/or a fee. Request permissions from permissions@acm.org.

ANRW ’16, July 16 2016, Berlin, Germany
c© 2016 Copyright held by the owner/author(s). Publication rights licensed to ACM.

ISBN 978-1-4503-4443-2/16/07. . . $15.00

DOI: http://dx.doi.org/10.1145/2959424.2959437

pair of end hosts and see wide adoption. One of the main
issues that has to be solved is, how can an end host know if
a new protocol X is supported along the whole end-to-end
path, including the remote host? In the absence of a pri-
ori knowledge or explicit signaling, the only way to know
whether X works is to try it.

Testing a set of candidate protocols can be done serially—
e.g., try first with the preferred choice X and, if the attempt
fails after a suitable timeout, then fall back to a default
alternative Y. Since a connection timeout can introduce a
delay of up to tens of seconds, serializing attempts can in-
cur a large latency penalty when the new protocol X is not
supported, stalling the application until the subsequent con-
nection trial succeeds.

The Happy Eyeballs (HE) mechanism was introduced as
a means to facilitate IPv6 adoption [13]. Dual-stack client
applications should be encouraged to try setting up connec-
tions over IPv6 first, and fall back to using IPv4 if IPv6
connection attempts fail. However, serializing tests for IPv6
and IPv4 connectivity can result in large connection latency.
Happy Eyeballs for IPv6 minimizes the cost in delay by par-
allelizing attempts over IPv6 and IPv4.

TCP SYN

SCTP INIT

TC
P

SY
N+

AC
K

SCTP

INIT+ACK

TCP ACK
TCP RST

SCTP COOKIE-ECHO

SC
TP

 C
OOKI

E-
AC

K

time
client

server

Figure 1: HE for selecting between SCTP and TCP,
with SCTP being the preferred choice.

The basic idea behind Happy Eyeballs for IPv6 can be
extended to discover support for transport protocols, and
in particular to allow an application to use SCTP when
it is available end-to-end, else revert to TCP when it is
not [11,12]. Figure 1, adapted from [12], depicts how HE for
transport selection may work. An end host simultaneously
initiates a TCP connection and an SCTP association; it is
assumed that the SYN+ACK arrives before the INIT-ACK.
If SCTP (the preferred choice) is supported, the TCP con-
nection is abandoned1. Similar to what is done in actual

1The figure assumes there is a mechanism to notify the ap-
plication about the reception of the SCTP INIT-ACK, so the

implementations of HE for IPv6 [10], a small delay may be
introduced to give an advantage to SCTP over TCP [14];
else, the host can just pick the protocol for which a response
(TCP SYN+ACK, SCTP INIT-ACK) arrives first.

This paper focuses on the performance penalties intro-
duced by HE for transports. In particular, we study the im-
pact that a HE mechanism for selecting between TCP and
SCTP may have on CPU load and memory usage at a des-
tination end-host. Our results provide empirical arguments
in favor of using such a mechanism for transport selection.

The rest of the paper is organized as follows. Section 2
provides some background and motivation for introducing a
transport HE mechanism. As follows from this discussion,
two major concerns about transport “happy-eyeballing” are
higher CPU load and memory usage. In Section 3 we assess
these concerns by experimentally evaluating HE between
TCP and SCTP. Finally, Section 4 concludes the paper.

2. BACKGROUND
Some thirty years back, there were two Internet trans-

port protocols to choose from: TCP and UDP. Since these
two protocols basically represent the opposites in the ser-
vices they provide—TCP provides a reliable, in-order, byte-
stream oriented delivery service and UDP an unreliable, un-
ordered message delivery—the selection between these two
protocols from an application viewpoint was mostly straight-
forward. Furthermore, it could be expected that all hosts
supported both TCP and UDP, and there were no middle-
boxes altering or blocking the traffic before it reached its
final destination.

Today, the Internet looks rather different. The number of
standard transport protocols and their options (and the dif-
ferent services they may provide) has increased, making the
selection of a suitable transport less straightforward. New
transports may allow to provide improved services to appli-
cations, but middleboxes such as firewalls, NATs and load
balancers have become an integral part of the Internet, and
there is a great diversity in how they are configured and de-
ployed; it cannot be assumed that any transport or transport
option can safely make it from sender to receiver.

As mentioned in Section 1, although HE was primarily
introduced as a way to promote the use of IPv6, it has also
been proposed as a way for an application to efficiently se-
lect transports [11, 12]. Wing and Yourtchenko [11] provide
recommendations for HTTP clients on how to seamlessly mi-
grate from TCP to SCTP without any adverse impact on the
user experience. Moreover, they propose a way to combine
an IPv6/IPv4 HE with a TCP/SCTP HE for a web browser
running on a dual-stack machine [12]. Also worth mention-
ing in this context is the work carried out by the Transport
Services (TAPS) working group of the IETF [8]. One of
this working group’s planned documents should “[. . .] ex-
plain how to select and engage an appropriate protocol and
how to discover which protocols are available for the selected
service between a given pair of end points [. . .]”, something
which will likely require HE between transport solutions.

Still, a HE transport-selection mechanism does raise ques-
tions about increased CPU usage and memory consumption.

application can then abort the TCP connection by sending
a TCP Reset. Without such mechanism, the TCP connec-
tion can only be aborted after the full four-way handshake
of SCTP is completed.

ANRW 2016 - EXPERIMENT SETUP Karl-Johan Grinnemo | May 22, 2016

100 Mbps

Web Client
(Ubuntu Linux 14.04 LTS)

Network Emulator
(Ubuntu Linux 14.04 LTS)

100 Mbps

Web Server
(FreeBSD 11)

Web Test App netem lighttpd

Figure 2: Experiment setup.

When HE is used, a single connection request from the ap-
plication might result in several concurrent transport con-
nection requests, i.e., not just one connection request at a
time as is the case when HE is not used. Hence, the use of
HE could result in an increase in both CPU and memory us-
age. Baker [3] provides recommendations on how to evaluate
IPv4/IPv6 HE, however, metrics like CPU load and memory
usage are not considered in [3]. Note that neither of these
are key metrics for IP HE, whereas they are for transport
HE—this is so because transport connection setup means
creating state in end points. There have been a few discus-
sions of the performance of HE for IPv6/IPv4 [1,2,4,7] but,
to the best of our knowledge, this paper is the first to focus
on performance aspects of transport-layer HE, in terms of
CPU load and memory usage.

A HE transport-selection mechanism also raises questions
about increased use of network resources, a key issue for
the scalability of HE. For instance, the aforementioned HE
proposal by Wing et al. [12] transmits four packets for every
application connection request. Still, as already pointed out
by Wing et al. [11,13,14], HE network resource usage should
be mitigated by the use of caching.

3. EVALUATION
This section evaluates HE between TCP and SCTP in

terms of CPU load and memory usage. The section begins
with a description of the experiment setup and the studied
test scenarios. The remainder of the section presents and
comments on the results from the execution of these scenar-
ios.

3.1 Experiment Setup
In our experiment, we modeled a single wide-area network

path to an upstream Web server. The laboratory network
used in our experiment is shown in Figure 2. The three
machines in the experiment were of type: Dell Optiplex
9020 with 3.60 GHz Intel Core i7-4790 (quad core) proces-
sors. The Web Client and Network Emulator machines ran
Ubuntu Linux 14.04 LTS with kernel 3.13.0, and the Web
Server machine ran FreeBSD 11 (revision r294499). All ma-
chines used the default network kernel settings, except those
listed in Table 1. These changes assured that the testbed
could properly support the connection rates considered in
this work, and disabled all SCTP features that were not
needed in the experiments. The Network Emulator machine
used netem to emulate a propagation delay of 20 ms.

The Web Client hosted a custom-designed Web traffic
generator in which two modified versions of the httperf [6]
web traffic generator (one that supports TCP and one that
supports SCTP) were combined to implement the studied
test scenarios. HTTP/1.0 with the Keep-Alive option en-
abled was used in both httperf programs. The FreeBSD
server hosted a lighttpd [9] server, modified to listen for
both TCP and SCTP HTTP/1.0 unencrypted and TLS-
encrypted requests. The lighttpd server was also modified

Table 1: Kernel Settings
Web Server Settings

net.inet.tcp.syncache.hashsize 2048
kern.ipc.somaxconn 4096
net.inet.sctp.pr_enable 0
net.inet.sctp.ecn_enable 0
net.inet.sctp.outgoing_streams 1
net.inet.sctp.incoming_streams 1
net.inet.sctp.asconf_enable 0
net.inet.sctp.auth_enable 0
net.inet.sctp.reconfig_enable 0
net.inet.sctp.nrsack_enable 0
net.inet.sctp.pktdrop_enable 0

Web Client Settings

net.ipv4.ip_local_port_range 10000 61000
net.ipv4.tcp_tw_recycle 1

Network Emulator Settings

net.ipv4.ip_forward 1

Table 2: lighttpd Settings
Configuration Parameter Settings

server.network-backend writev
server.event-handler kqueue
server.max-fds 4096
server.max-connections 2048
server.max-worker 7
ssl.use-sslv2 disable
ssl.use-sslv3 disable

so that the Nagle algorithm was disabled on all listen sock-
ets to assure that there were no additional delays in total
connection time. The default configuration parameters of
the lighttpd server were used, except those listed in Table 2,
which assured that the lighttpd server could efficiently han-
dle the HTTP request rates considered in the experiments
and that TLS was always preferred. The OpenSSL library
v1.0.1e was used for the TLS protocol. The preferred ci-
pher suite was ECDHE-RSA-AES128-GCM-SHA256, while
Intel’s AES New Instructions (AES-NI) set for hardware
accelerated AES operations was utilised [5]. The lighttpd
server used the FreeBSD kernel SCTP implementation, and
the Web traffic generator used the Linux kernel SCTP im-
plementation.

An experiment run lasted for 600 s, during which the Web
traffic generator generated exponentially distributed HTTP
requests with a fixed average intensity, and with requested
Web object sizes of 1 KiB and 35 KiB. In our experiment,
we considered HTTP-request intensities ranging between
100 requests/s and 1000 requests/s. We measured:

• the total CPU load on the server,

• the CPU utilisation of every process that has a sub-
stantial contribution to the total CPU time,

• the total kernel memory used for networking.

Per-process CPU utilisation was sampled every 20 s and
was calculated based on the accumulated CPU time given by

Table 3: Malloc types and zones
Command Malloc type / Zone

vmstat -m filedesc, kqueue, ip6opt, ip6ndp,
pcb, BPF, ifnet, ifaddr,
ether multi, lltable, routetbl, igmp,
in mfilter, in multi, ip moptions,
sctp map, sctp stri, sctp stro,
sctp a it, sctp atcl, sctp atky,
sctp athm, sctp vrf, sctp ifa,
sctp ifn, sctp timw, sctp iter,
sctp socko, hostcache, in6 mfilter,
in6 multi, ip6 moptions, mld,
inpcbpolicy, ipsecpolicy

vmstat -z KNOTE, socket, udp inpcb, ud-
pcb, tcp inpcb, tcpcb, tcptw, syn-
cache, hostcache, sackhole, tcpre-
ass, sctp ep, sctp asoc, sctp laddr,
sctp raddr, sctp chunk, sctp readq,
sctp stream msg out, sctp asconf,
sctp asconf ack, selfd

netstat -m mbufs, mbuf clusters, 4k jumbo
clusters, 9k jumbo clusters and 16k
jumbo clusters

procstat -r. The total CPU load on the server was measured
by measuring the accumulated CPU time of the idle sys-
tem process (i.e., the total time that the CPU was idle) and
subtracting this time from the total available CPU time dur-
ing the measured interval (i.e., 160 s for an 8 parallel thread
CPU). Total kernel memory utilisation was also sampled ev-
ery 20 s and was calculated based on the output of vmstat -z,
vmstat -m, and netstat -m. Table 3 outlines the malloc types
and zones that were used to calculate total network-related
kernel memory utilisation.

Our experiment comprised three test cases. In the first
case, we evaluated a naive HE mechanism that did not em-
ploy caching of the outcome of previous happy eyeball in-
vocations and which always resulted in a TCP connection
being set up. The rationale behind this case was to serve
as a baseline for the remaining two cases. Next, in the sec-
ond test case, we still considered the same naive HE mech-
anism as in the first case, however, this time we evaluated
happy eyeballing between TLS-encrypted TCP and SCTP.
The second test case aimed at providing an appreciation of
how the increase in CPU load and memory usage due to
happy eyeballing compares with that caused by the TLS en-
cryption itself. Lastly, in the third test case, we evaluated
an optimized HE mechanism that employed caching of the
outcome of previous connection attempts, using TCP and
SCTP both with and without TLS encryption. The purpose
behind the third test case was to obtain an understanding
of the extent to which HE CPU load and memory usage de-
crease with caching, and to get a feel for the overhead of HE
with a more optimized implementation. In this test case, we
considered three different outcomes of the HE mechanism:
HE always results in a TCP connection being set up (HE-
TCP); HE always results in an SCTP connection being set
up (HE-SCTP); and, HE results in a TCP connection being
set up half the time and an SCTP connection half the time
(HE-50%).

0

1

2

3

4

5

6

7

8

9

10

TCP SCTP HE-­‐TCP TCP SCTP HE-­‐TCP TCP SCTP HE-­‐TCP TCP SCTP HE-­‐TCP

100 400 700 1000

CP
U
	
 u
til
is
at
io
n	

(%

)

Average	
 request	
 rate	
 (requests/s)

Requested	
 object	
 size	
 =	
 1	
 KByte
Requested	
 object	
 size	
 =	
 35	
 KBytes

(a) CPU utilisation.

0

5

10

15

20

25

30

35

TCP SCTP HE-­‐TCP TCP SCTP HE-­‐TCP TCP SCTP HE-­‐TCP TCP SCTP HE-­‐TCP

100 400 700 1000

Ke
rn
el
	
 m

em
or
y	

us
ag
e	

(M

By
te
s)

Average	
 request	
 rate	
 (requests/s)

Requested	
 object	
 size	
 =	
 1	
 KByte
Requested	
 object	
 size	
 =	
 35	
 KBytes

(b) Kernel memory usage.

Figure 3: The results for the basic test case.

3.2 The Basic Test Case
The outcome of the basic test case is shown in Figure 3.

Figure 3(a) compares the CPU load of HE between TCP
and SCTP with that of single TCP and SCTP connection
requests in the basic case. The figure shows how the CPU
load varied as a function of the connection request rate and
the size of the requested Web objects. The bar charts show
the median values measured as described in Section 3.1, with
error bars spanning the 10th and 90th percentiles. As fol-
lows, the CPU load of HE was quite substantial in the 1-KiB
tests, roughly 40% higher CPU load than SCTP (i.e., the
transport protocol considered in the study that consumed
the most CPU load, in the tests with request rates 1000, 700,
and 400 requests/s). However, as is evident from the 35-KiB
tests, this was most likely an effect of the small amount of
bytes transmitted in each Web response, and thus the small
amount of bytes over which the CPU load was amortized:
In the 35-KiB tests, the CPU load of HE was less than 10%
higher than that of SCTP in the tests with request rates of
1000, 700, and 400 requests/s.

Figure 3(b) examines the kernel memory usage of HE com-
pared with that of single TCP and SCTP connection re-
quests. The bar charts show the median values with error
bars spanning the 10th and 90th percentiles. Similar to Fig-
ure 3(a), the bar charts illustrate how the kernel memory
varied with increasing connection request rates, and for dif-
ferent sizes of the requested Web object. We observe that
HE had no or negligible impact on the kernel memory con-
sumption – neither in the 1-KiB tests nor in the 35-KiB tests
do we see a significant increase in kernel memory usage. In
fact, the 35-KiB tests indicate that as the connection request
rate increases, HE (at least in those cases where TCP wins)
reduces the kernel memory usage as compared with SCTP.

3.3 Happy Eyeballing in the TLS Test Case
Figure 4 summarises the results from the TLS test case.

Figure 4(a) is similar to Figure 3(a), but compares the CPU
load in the case with TLS-encrypted connections. We ob-
serve that contrary to the basic case, the impact on CPU
load of HE as compared with SCTP decreases significantly
in the 1-KiB tests (less than 13% in all cases) and is not
statistically significant in the 35-KiB tests (less than 4% in

the tests with request rates 1000, 700, and 400). Similar ob-
servations also apply when compared with TCP, where the
impact of HE on CPU load is significantly lower than that
in the basic case. Again, the reason HE had less effect on
CPU load in this scenario compared with the basic case, was
an effect of the way the CPU load was amortized.

Figure 5 illustrates how the CPU was shared among the
kernel (including the FreeBSD subsystem) and the lighttpd
server when the HE mechanism is used in the 35-KiB tests;
both the tests for the basic case, as well as those for the
TLS case. We observe that since the CPU load inflicted by
HE was almost the same in both test cases, the CPU load
of TLS (as reflected in the increase on the user CPU time of
the lighttpd processes) overshadowed that of HE. Thus, in
sum, we draw the conclusion that although HE is done at the
price of some extra CPU load, the price becomes marginal
for larger Web object sizes, and becomes even less significant
in those cases HE is done between encrypted connections.

As regards the kernel memory usage in the TLS case, it
follows from Figure 4(b) that HE had a marginal impact on
this factor in this test case as well: In all tests, the kernel
memory usage of HE is slightly higher than that of TCP
(less than 8% higher memory usage), and always less than
the kernel memory usage of SCTP.

3.4 Happy Eyeballing with Cached Results
In the basic and TLS use cases, we evaluated a naive HE

mechanism that always tried both TCP and SCTP. This
is, however, a rather inefficient implementation of HE. A
more efficient and, as we see it, more realistic implemen-
tation would cache the outcome of previous connection at-
tempts. So, e.g., assume that we have a cache hit rate of
80%, then HE tries both TCP and SCTP in only 20% of
the application connection requests; in the remaining 80%
of the application connection requests, HE issues either a
TCP or SCTP connection request depending on the content
of the HE cache. A cache hit rate of 80% is actually not an
unreasonable figure. In statistics we obtained from Mozilla,
they observed a hit rate of ≈ 84% in the Firefox internal
‘route’ cache during a six-week observation period.

Figure 6 shows the median CPU load (with error bars
spanning the 10th and 90th percentiles) of HE at different

0

5

10

15

20

25

30

TCP SCTP HE-­‐TCP TCP SCTP HE-­‐TCP TCP SCTP HE-­‐TCP TCP SCTP HE-­‐TCP

100 400 700 1000

CP
U
	
 u
til
is
at
io
n(
%
)

Average	
 request	
 rate	
 (requests/s)

Requested	
 object	
 size	
 =	
 1	
 KByte
Requested	
 object	
 size	
 =	
 35	
 KBytes

(a) CPU utilisation.

0

5

10

15

20

25

30

35

TCP SCTP HE-­‐TCP TCP SCTP HE-­‐TCP TCP SCTP HE-­‐TCP TCP SCTP HE-­‐TCP

100 400 700 1000

Ke
rn
el
	
 m

em
or
y	

us
ag
e	

(M

By
te
s)

Average	
 request	
 rate	
 (requests/s)

Requested	
 object	
 size	
 =	
 1	
 KByte

Requested	
 object	
 size	
 =	
 35	
 KBytes

(b) Kernel memory usage.

Figure 4: The results for the TLS test case.

all#lighttpd#processes#(usr#CPU#time)

0"

5"

10"

15"

20"

25"

30"

35"

40"

45"

no*TLS" TLS" no*TLS" TLS" no*TLS" TLS" no*TLS" TLS"

100" 400" 700" 1000"

M
ea
n"
CP

U
"T
im

e"
(s
ec
on

ds
)"

Average"request"rate"(requests/sec)"

random_harvestq"system"process"
kernel"system"process"
intr"system"process"
all"lighJpd"processes"(sys"CPU"Kme)"
all"lighJpd"processes"(usr"CPU"Kme)"

Figure 5: Breakdown of CPU utilisation for happy
eyeballing between TCP and SCTP. Requested ob-
ject size is 35 KiB.

cache hit ratios between 0% (naive HE that always tries both
TCP and SCTP) and 100% (single TCP flows) in the 1-KiB
tests: Figure 6(a) shows the total CPU load when TLS is not
used, and Figure 6(b) when TLS is used. Figure 7 shows the
corresponding results for the 35-KiB tests. Since the CPU
load increases with increasing connection request rates and
is thus more pronounced at higher request rates, we only
consider the tests with a request rate of 1000 requests/s in
Figures 6 and 7. Still, it should be noted that similar results
were obtained for the lower connection request rates. The
HE tests considered three outcomes: HE always results in a
TCP connection being setup (HE-TCP); HE always results
in an SCTP connection being setup (HE-SCTP); and, HE
results in a TCP connection being setup half the time and
an SCTP connection half the time (HE-50%).

We observe that the CPU load of HE decreases linearly
as the cache hit rate increases, and this decrease is higher,
percentage-wise, when TLS is not used (in the 1-KiB tests
about 43% reduction in the CPU load when the cache hit
rate is 80% and TLS is not used, and 18% reduction for TLS
encrypted connections and the same cache hit rate). Again,

the reason caching had less effect on the decrease of the CPU
load when TLS was used, was the effect of the way the CPU
load was amortised. We further observe in Figure 6 that
irrespective of whether TLS is being used or not, the dif-
ference in the CPU load imposed by HE-TCP, HE-50, and
HE-SCTP is negligible for the 1-KiB tests. This implies that
for small objects the additional cost of the http transaction
is almost the same for both TCP and SCTP. For larger ob-
jects (e.g., 35 KiB), however, this cost is higher when SCTP
is used, and hence significant differences between HE-TCP,
HE-50, and HE-SCTP are observed at low cache hit rates in
Figure 7.

We omit showing how the cache hit ratio influences the
kernel memory consumption, since already the basic and
TLS use cases suggest that kernel memory usage is not much
of an issue for HE. Still, for completeness, we can mention
that the cache hit ratio also had a positive impact on kernel
memory usage. For instance, in the 1 KiB tests the kernel
memory usage of HE at a cache hit rate of 80% was pretty
much the same as for single TCP flows.

4. CONCLUSIONS
The Happy Eyeballs algorithm was originally proposed,

and is currently being deployed, as a way of making a smooth
transition from IPv4 to IPv6. However, the algorithm has
also been proposed as a transport-selection mechanism. This
paper evaluates happy eyeballing between TCP and SCTP,
and shows that although HE increases CPU load as com-
pared with a single TCP or SCTP connection establish-
ment, the increase is in the order of 10% for 35 KiB Web
objects, i.e., fairly typical Web objects, and is even smaller
in those cases the happy eyeballing takes place between TLS-
encrypted connections. Moreover, we show that the caching
of connection-request results substantially reduces the HE
CPU load, especially in comparison with the cost of TLS.
As regards memory usage, our results suggest that HE has
essentially the same memory footprint as single TCP/SCTP
flows. The analysis in this paper shows that integrating a
Happy Eyeballs mechanism into a library which provides a
generic transport service is indeed a viable option to enable
the use of advanced transport-protocol features whenever
they are available. An example of such a library is the neat

0

1

2

3

4

5

6

7

8

9

10

0 0.2 0.4 0.6 0.8 1

CP
U
	
 u
til
is
at
io
n	

(%

)

Cache	
 hit	
 rate

HE-­‐TCP

HE-­‐50%

HE-­‐SCTP

(a) Basic scenario.

0

5

10

15

20

25

30

0 0.2 0.4 0.6 0.8 1

CP
U
	
 u
til
is
at
io
n	

(%

)

Cache	
 hit	
 rate

HE-­‐TCP

HE-­‐50%

HE-­‐SCTP

(b) TLS scenario.

Figure 6: Impact of cache hit ratio on CPU utilisation. Requested object size is 1 KiB with a request rate of
1000 requests/s.

0

1

2

3

4

5

6

7

8

9

10

0 0.2 0.4 0.6 0.8 1

CP
U
	
 u
til
is
at
io
n	

(%

)

Cache	
 hit	
 rate

HE-­‐TCP

HE-­‐50%

HE-­‐SCTP

(a) Basic scenario.

0

5

10

15

20

25

30

0 0.2 0.4 0.6 0.8 1

CP
U
	
 u
til
is
at
io
n	

(%

)

Cache	
 hit	
 rate

HE-­‐TCP

HE-­‐50%

HE-­‐SCTP

(b) TLS scenario.

Figure 7: Impact of cache hit ratio on CPU utilisation. Requested object size is 35 KiB with a request rate
of 1000 requests/s.

library currently being developed by the NEAT project2.
Future work includes evaluating the performance of HE

when there are more than two transport solutions to be
tried, e.g., TLS or DTLS encrypted traffic using IPv4 or
IPv6 as the network layer, and TCP, native SCTP, or UDP-
encapsulated SCTP as the transport layer, giving a total of
six protocol candidates. Already, we note that the use of
caching becomes even more important in these cases. Fu-
ture work would also consider real-world experiments, where
middlebox interference can be taken into account, as well as
additional metrics to further examine the effects of trans-
port happy eyeballing on both the network and destination
end hosts, such as resource consumption on middleboxes,
network load, and transaction times.

5. ACKNOWLEDGMENTS
The authors would like to thank Patrick McManus (Mozilla)

for providing the Firefox cache-hit statistics.

2https://github.com/NEAT-project/neat

This work has received funding from the European Union’s
Horizon 2020 research and innovation programme under grant
agreement No. 644334 (NEAT). The views expressed are
solely those of the authors.

6. REFERENCES
[1] E. Aben. Hampering Eyeballs – Observations on Two

“Happy Eyeballs” Implementations. RIPE NCC, Nov.
2011. https://labs.ripe.net/Members/emileaben/
hampered-eyeballs.

[2] V. Bajpai and J. Schoenwaelder. Measuring the effects
of happy eyeballs. Internet Draft draft-bajpai-happy,
work in progress, July 2013.
https://tools.ietf.org/html/draft-bajpai-happy.

[3] F. Baker. Testing Eyeball Happiness. RFC 6556
(Informational), Apr. 2012.

[4] O. Bonaventure. Happy eyeballs makes me unhappy...,
Dec. 2013. http://perso.uclouvain.be/olivier.
bonaventure/blog/html/2013/12/03/happy.html.

[5] S. Gueron. Intel R© Advanced Encryption Standard
(AES) New Instructions Set. Intel Corporation, 2012.

[6] httperf. The httperf page on SourceForge.
https://sourceforge.net/projects/httperf.

[7] G. Huston. Bemused Eyeballs: Tailoring Dual Stack
Applications for a CGN Environment. The ISP
Column, May 2012. http:
//www.potaroo.net/ispcol/2012-05/notquite.html.

[8] IETF. Transport Services (taps) Working Group.
https://datatracker.ietf.org/wg/taps/charter/.

[9] Lighttpd. Lighttpd – fly light.
https://www.lighttpd.net.

[10] D. Schinazi. Apple and IPv6 — Happy Eyeballs.
Email to the IETF v6ops mailing list, July 2015.
https://www.ietf.org/mail-archive/web/v6ops/

current/msg22455.html.

[11] D. Wing and A. Yourtchenko. Happy Eyeballs:

Trending Towards Success (IPv6 and SCTP). Internet
Draft draft-wing-tsvwg-happy-eyeballs-sctp-02, work in
progress, Oct. 2010. https://tools.ietf.org/html/
draft-wing-tsvwg-happy-eyeballs-sctp-02.

[12] D. Wing and A. Yourtchenko. Improving User
Experience with IPv6 and SCTP. The Internet Protocol
Journal, 13(3), Sept. 2010. http://www.cisco.com/c/
en/us/about/press/internet-protocol-journal/

back-issues/table-contents-49/133-he.html.

[13] D. Wing and A. Yourtchenko. Happy Eyeballs:
Success with Dual-Stack Hosts. RFC 6555 (Proposed
Standard), Apr. 2012.

[14] D. Wing, A. Yourtchenko, and P. Natarajan. Happy
eyeballs: Trending towards success (IPv6 and SCTP).
Internet Draft draft-wing-http-new-tech, work in
progress, Aug. 2010. https://tools.ietf.org/html/
draft-wing-http-new-tech-01.

