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ABSTRACT
We present a method to compute the customer cones of peer-
ing networks using PCH data. Our method computes loca-
tion dependent customer cones (LDCCs) for networks that
are present at more than one IXP instead of computing a
single customer cone for each network. We use our method
to compute 5753 LDCCs for 3290 IXP participants. Our
preliminary analysis of the LDCCs reveals that IXP partic-
ipants often have different customer cones at different loca-
tions.

CCS Concepts
•Networks→Topology analysis and generation; Pub-
lic Internet;
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1. INTRODUCTION
The autonomous systems (ASes) in the Internet engage

in two types of business relationships to exchange traffic:
provider-to-customer (p2c) and peer-to-peer (p2p). In a p2c
relationship, one AS (the customer) pays the other AS (the
provider) for transiting traffic to the rest of the Internet. In
a p2p relationship, two ASes exchange traffic between them-
selves and their customers on a settlement-free basis. Several
studies have developed heuristic algorithms to infer AS rela-
tionships using BGP data [9, 15, 13, 6, 12, 8, 11]. A recent
work by Varghese and Ruan [14] presented a machine learn-
ing approach to inferring AS relationships (i.e., edge types)
for AS graphs derived from any data source. Dimitropou-
los et al. [8] defined the customer cone of an AS as the set
ASes that can be reached from it following only p2c links
and used inferred AS relationships to compute AS customer
cones. Luckie et al. [11] presented a new method of inferring
customer cones (i.e., provider/peer observed cone) and used
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inferred customer cones to show the flattening of the Inter-
net topology and the financial consolidation of the Internet
transit industry. CAIDA’s AS rank project uses inferred AS
relationships to rank ASes based on their customer cones
and publishes AS ranking at [1]. Customer cones have also
been used to select traceroute servers for identifying PoPs
for hybrid AS relationships [10] and assess market concen-
tration in the European Internet upstream market [7].

In this paper we present a new method of computing AS
customer cones using BGP data archived by PCH [3], which
operates route collectors at more than 100 IXPs around
the world. Our method computes the customer cones of
IXP participants that announce their customer routes to
the PCH collectors. Unlike the existing method, our method
does not make use of AS relationship inference algorithms
which could produce inaccurate inferences. In addition, our
method computes location dependent customer cones for ASes
that are present at more than one IXP instead of computing
a single customer cone for each AS.

2. CUSTOMER CONE COMPUTATION

2.1 PCH Data
At an IXP where a PCH collector is present, some IXP

participants peer with the collector and send BGP route
announcements and BGP updates to it. Such IXP partic-
ipants are referred to as Vantage Points (VPs). There are
two types of VPs: full VP (FVP) and partial VP (PVP). A
FVP announces all its routes to the collector while a PVP
announces only its customer routes to the collector. With a
few exceptions, all PCH VPs are PVPs.

We download the routing table snapshots of all PCH col-
lectors on 3/1/2016. There are 3290 PVPs and 2 FVPs
in our dataset. We compute location dependent customer
cones (LDCCs) for all PVPs using the method described
below.

2.2 Method
We first extract (prefix, AS path) pairs from each snapshot

in our dataset. We discard a (prefix, AS path) pair if the AS
path contains a loop or an invalid ASN 1. Next we extract
the view of each PVP from each snapshot, where the view
of a PVP X contains all the (prefix, AS path) pairs in which
X is the first ASN in the AS path.

Consider the snapshot of a PCH collector at IXP I. Af-
ter we use the above procedure to compute the views of all

1An ASN is invalid if it is unallocated or reserved.



PVPs at I, we compute the customer cone of each PVP X
at I as follows. Let <X A B C> be an AS path in X’s
view. We know A is a customer of X because X only an-
nounces customer routes to the collector. This implies that
B is a customer of A and C is a customer of B because
an AS generally only exports customer routes to a provider
(i.e., provider routes and peer routes are not exported to a
provider). So A, B, and C all belong to the customer cone
of X. Thus, we compute X’s customer cone at I to be the
union of all ASes that appear in X’s view at I minus X
itself.

The above method works if all ASes follow the policy of
not exporting provider routes or peer routes to providers. In
this case, all AS paths are valley-free. However, we note that
some ASes violate the policy. For example, the snapshot of
the PCH collector at VIX in Vienna, Austria contains AS
path <6663 25145 6762 12874 196753 34281>. Our algo-
rithm will put all ASNs after 6663 in the customer cone of
6663. However, 6762 cannot be in the customer cone of 6663
because it is a Tier 1 network. Thus the ASNs after 6762
cannot belong to the customer cone of 6663. The problem
is that the AS path is not valley-free. Specifically, 25145
exported the provider route <6762 12874 196753 34281> to
its provider 6663, which leads to a valley path. We should
discard valley paths so that they are not used to derive cus-
tomer cones. We use a simple approach to detect valley
paths: if an AS path contains a Tier 1 AS 2, then it is a
valley path and is discarded.

3. RESULTS
We compute a total of 5753 location dependent customer

cones (LDCCs) for 3290 PVPs. For each PVP, we also com-
pute a combined customer cone (CCC) which is the union
of all its LDCCs.

Comparison with CAIDA Customer Cones. CAIDA
uses inferred AS relationships to compute AS customer cones
and publishes the customer cone datasets at [2]. We down-
load CAIDA’s customer cone dataset for 3/1/2016 and com-
pare it with the CCCs computed by our method. There are
3265 common ASes in our dataset and CAIDA dataset. Our
cone and CAIDA cone have the same size for 2008 (61.5%)
ASes. Our cone is larger than CAIDA cone for 201 (6.2%)
ASes and smaller than CAIDA cone for 1056 (32.3%) ASes.

We rank the 3265 common ASes based on cone size (i.e.,
number of ASes in cone). Table 1 shows the top 10 ASes
based on our cones. The number in parentheses next to an
ASN indicates the rank of the AS based on CAIDA cones.
Our ranking is mostly consistent with CAIDA ranking. The
only difference is that CAIDA ranks AS1273 before AS3491.
We look up the 10 networks in PeeringDB [4] and find that
all of them are NSPs.

Location Dependency of Customer Cones. There
are 1158 ASes that peer with PCH at more than one IXP
and thus have more than 1 LDCC. Out of the 1158 ASes,
512 (44.2%) ASes have nonidentical LDCC sizes and 681
(58.8%) ASes have nonidentical number of prefixes in their
LDCCs. Thus, it is common for peering networks to have
different customer cones and different set of prefixes at dif-
ferent locations.

We look up the 1158 ASes in PeeringDB and find the

2We manually identify 19 Tier-1 ASes according to
Wikipedia [5] and CAIDA’s inferred clique [2].

Table 1: Top 10 Networks Based on Our Cones
ASN Our Cone Size CAIDA Cone Size

AS3257 (1) 19,256 18,886
AS6762 (2) 12,379 14,319
AS6939 (3) 10,771 9,501
AS3491 (5) 7,825 4,561
AS1273 (4) 5,322 5,805
AS6461 (6) 4,330 4,415
AS9002 (7) 3,471 3,656
AS20485 (8) 2,883 3,153
AS12389 (9) 2,589 2,815
AS4323 (10) 2,265 2,288

business types for 956 of them; 92.5% of these ASes are of
type NSP, Cable/DSL/ISP, and Content. For each of the
three business types, Table 2 shows the number of ASes and
the percentage of ASes that have nonidentical cone sizes and
nonidentical number of prefixes at different locations. We
observe that NSPs tend to have different cones and different
prefixes at different locations. Access providers and content
providers tend to have identical cones but different prefixes
at different locations. ASes of all three business types are
more likely to have location dependent prefixes than location
dependent cones.

Table 2: Location Dependency of Customer Cones
for Three Business Types

Business Type Count Nonident. Cone Nonident. Prefix

NSP 386 66.8% 76.2%
Cable/DSL/ISP 305 39.7% 54.7%

Content 193 29.5% 58.5%

We examine the LDCCs of three big content providers:
Apple (AS714), Akamai (AS20940), and Google (AS15169).
We find that Apple announces 119-140 prefixes at 6 IXPs
in North America, 19-23 prefixes at 5 IXPs in Europe, and
43 prefixes at one IXP in Asia Pacific. This is consistent
with a note in Apple’s PeeringDB entry stating “We are
announcing +100 routes in the US now, fewer in Japan,
Singapore, Hong Kong, Sydney and Europe.” Akamai also
announces different number of prefixes at different locations:
the number varies from 1 to 147 across 29 IXPs. On the
other hand, Google announces the same number of prefixes
at 24 out of the 28 IXPs where it peers with PCH.

4. CONCLUSION AND FUTURE WORK
We present a method to compute location dependent cus-

tomer cones (LDCCs) of peering networks using PCH data.
Our preliminary results show that peering networks often
have different customer cones and different prefixes at dif-
ferent locations. In our future work, we will perform an
in-depth analysis of the LDCCs of different types of peering
networks to gain insight on the location dependent nature
of AS routing policies. We will create a web site to pub-
lish LDCCs of peering networks on a monthly basis. We
believe LDCC data is of value to network operators as well
as researchers. It can aid network operators in selecting
peers at different IXPs. Researchers can use LDCC data to
study the evolution of the Internet transit ecosystem in dif-
ferent regions of the world, discover correlations between AS
peering behaviors and their customer cone properties, and
investigate how peering and depeering events cause changes
in the customer cones of ASes and vice versa.
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