Towards Decentralized Fast Consistent Updates

MARCO CHIESA

UNIVERSITÉ CATHOLIQUE DE LOUVAIN

JOINT WORK WITH:

THANH DANG NGUYEN (UC LOUVAIN), MARCO CANINI (UC LOUVAIN)

Updating the network configuration

A fundamental network operations performed whenever:

- network policy changes
 - network devices fail
 - traffic load changes
 - security attacks

Updating the network configuration

A fundamental network operations performed whenever:

- network policy changes planned updates
 - network devices fail
 - traffic load changes
 - security attacks

Updating the network configuration

A fundamental network operations performed whenever:

network policy changes
 network devices fail
 traffic load changes
 network attacks

Unplanned network update scenario

network controller

current routing

protection routing

new routing

Unplanned network update scenario

network controller

new routing

Unplanned network update scenario

Desiderata: <u>fast network update</u> to the new configuration

network controller

current routing

One-shot updates are dangerous

The network is a distributed system

Asynchronous update messages

One-shot updates are dangerous

The network is a distributed system

Asynchronous update messages

If Switch 2 updates BLUE before Switch 5 installs the forwarding rule for BLUE, traffic is blackholed!!

Flow dependencies must be met to avoid link congestion

A simple network:

- Each link capacity is 10
- Each flow requires 5 units

Goal: update from current to target

GREEN and BLUE are updated

Flow dependencies must be met to avoid link congestion

A simple network:

- Each link capacity is 10
- Each flow requires 5 units

Goal: update from current to target

GREEN and BLUE are updated

If Switch 1 updates BLUE before GREEN, link 1-2 is congested!!

Most relevant related work

Dyonisus: centralized synchronization scheduling computation

Synchronization between switches and controller slows down the update

Most relevant related work

Dyonisus: centralized synchronization scheduling computation

Synchronization between switches and controller slows down the update

TIME4: one-shot update by means of clock synchronization
Inaccuracy in clock synchronization leads

Inaccuracy in clock synchronization leads to anomalies

Ez-segway

Decentralized fast network update

Ez-segway

Decentralized fast network update

Key idea

Move simple, yet powerful, logic from the controller to the switches

Ez-segway Separation of concerns

Central controller role:

- detects flow dependencies
- computes flows partial ordering
- sends ordering to the switches

Ez-segway Separation of concerns

Central controller role:

- detects flow dependencies
- computes flows partial ordering
- sends ordering to the switches

Switches role:

- combine local and global (precomputed) information to perform the update
- coordinate with neighbors

Ez-segway the controller perspective

Central controller role:

- 1. detects flow dependencies
 - constructs a dependency graph

Ez-segway the controller perspective

Central controller role:

- 1. detects flow dependencies
 - constructs a dependency graph
- 2. computes flows partial ordering
 - assign priorities to flows

Assignign flow priorities

Assignign flow priorities

Assignign flow priorities

Ez-segway: the controller perspective

Central controller role:

- 1. detects flow dependencies
 - constructs a dependency graph
- 2. computes flows partial ordering
 - assign priorities to flows
- 3. sends scheduling to the switches
 - only once

Ez-segway: the switches perspective

Switches role:

coordinate with neighbors

Switch role: coordinate with neighbors

New path installed upwards

Switch role: coordinate with neighbors

New path installed upwards

Switch role: coordinate with neighbors

New path installed upwards

Switch role: coordinate with neighbors

New path installed upwards

Packets are routed on the new path

Switch role: coordinate with neighbors

New path installed upwards

Packets are routed on the new path

Old path removed downwards

Switch role: coordinate with neighbors

New path installed upwards

Packets are routed on the new path

Old path removed downwards

Switch role: coordinate with neighbors

New path installed upwards

Packets are routed on the new path

Old path removed downwards

Switch role: coordinate with neighbors

Switch 2 is traversed in both paths

Switch role: coordinate with neighbors

Switch 2 is traversed in both paths

Switch role: coordinate with neighbors

Switch 2 is traversed in both paths

Switch role: coordinate with neighbors

Switch 2 is traversed in both paths

Switch role: coordinate with neighbors

Switch 2 is traversed in both paths

Switch role: coordinate with neighbors

Switch 2 is traversed in both paths

Switch role: coordinate with neighbors

Switch 2 is traversed in both paths

Ez-segway: the switches perspective

Switches role:

- coordinate with neighbors
- combine local and global (pre-computed) information to perform the update
 - perform an update operations only if
 - i) there is enough spare capacity
 - ii) the update operations will not prevent any higherpriority update that is still not executable

Enforcing priorities

Switch 4 can move both **GREEN** and **GREY**.

It first moves **GREEN** since it has higher priority than **GREY**

Large-scale simulations

ez-segway: switches coordinate the update

centralized: controller coordinates the update

Measure: total update time

Setting:

- 6 real topologies from RocketFuel
- link capacities: 1...100 Gbps
- controller placed at centroid
- gravity traffic model

- shortest-path-via-random-node
- updates triggered by link failures
- 10 executions per topology

Update time comparison [ms]

Completion time reduced by 15%-50%

Summary

ezSegway design

- Control plane computes flows partial ordering
- Data plane coordinates the update

Better performance: Speeding up the update (up to 2x)

Ongoing work:

- Mininet evaluation
- Feasibility check on Centec switch
- Formalization