UCL / % INL
Universite ;L ip nEtworking lAb
catholique WE=S T e owainclaneud belgiy
deLouvain = e

v

An enhanced socket API for
Multipath TCP

Benjamin Hesmans
Olivier Bonaventure
UCL, Belgium

http://inl.info.ucl.ac.be
http://www.multipath-tcp.org

Outline

 Multipath TCP

* The proposed socket API

What is Multipath TCP ?

* Arecently standardised TCP extension that
allows packets belonging to one connection to
be sent over different paths

— Both WiFi and LTE on smartphones

— Both IPv6 and IPv4 on dual-stack but single-
homed hosts

— Leveraging Equal Cost Multipath in datacenters

Multipath TCP

 Multipath TCP is an evolution of TCP

* Design objectives
— Support unmodified applications
— Work over today’s networks (IPv4 and IPv6)
— Work in all networks where regular TCP works

Multipath TCP and the architecture

Application
o

socket
Application| ..-*""
Transport
Network | v, TCP1 || TCP2 | .. | TCPn
Datalink
Physical

A. Ford, C. Raiciu, M. Handley, S. Barre, and J. lyengar, “Architectural guidelines for multipath TCP
development", RFC6182 2011.

Low-latency for Siri

Me What You Want from Me' by

Ooh, | know this song! It’s ‘Tell /[.
B | . Voice samples
] : Tell Me What You Want |
famie : i//\\/\//%

WiFi

@

Voice samples

3G/LTE Sept. 2013

- Siri uses MPTCP
Through the Shazam app, Siri can tell you
what song is playing around you. /

"Hey Siri, what song is this?”

Y

2005 2010 2015 2020

WIiFi/LTE Bonding
DTS

N \ amazZoncom
\ N
Multipath TCP s Regular TCP ﬁ
>
W\ @ ¢ = GOUSIC
'~ //SOCKS
A —_
4G/LTE July 2015

KT uses MPTCP

eS

o\ .
S «e5°“ Hybrid Access Networks
==
. TC a@;on.com@
\§ |; E Multipath TCP ‘ s Regular TCP n
” Google

o 3
\ 4ber|d Access
~ _ 7 Gateway
4G/LTE 2016

Hybrid Access Networks

|

Sending data over different paths ?

— A Multipath TCP connection is composed of one or
more regular TCP subflows that are combined

e Each host maintains state that glues the TCP subflows
that compose a Multipath TCP connection together

e Each TCP subflow is sent over a single path and appears
like a regular TCP connection along this path

Multipath TCP
Connection establishment

First subflow

established
SYN, MP_CAPABLE(KeyA)

SYN+ACK, MP_CAPABLE(KevB)
ACK, MP_CAPABLE(KeyA,

TokenA=H(KeyA)

TokenB=H(KeyB)
TokenB=H(KeyB)

seq=123, DSeq=1, "abc"

Establishment of the second subflow

TokenA=H(KeyA)

TokenA H(KeyA
TokenB=H(KeyB) (KeyA)

2nd subflow
established

SYN MP_JOIN[TokenB,NonceA=123]

€ SYN+ACK MP_JOIN[TokenA,NonceB=456,
HMAC(123||456,"keyB| | keyA")]

ACK,MP_JOIN [HMAC(456| | 123,"keyA| | keyB")] -
Seq=567, Dseq=4, "def"

TCP subflows

 Which subflows can be associated to a
Multipath TCP connection ?

— At least one of the elements of the four-tuple
needs to differ between two subflows
* Local IP address
 Remote IP address
* Local port
* Remote port

Subflow agility

Multipath TCP supports
— addition of subflows

— removal of subflows

How to control these subflows ? [\

Yo

* Current reference implementation on Linux

— Standard socket APl to support existing
applications

e Subflows are managed by the path manager
kernel module

— Full-mesh
— NDiffports

How to control these subflows ? «

/* socket creation */
s = socket (AF_MULTIPATH, SOCK_STREAM, IPPROTO_TCP);

/* creation of first subflow *
sa_endpoints_t endpoints;

/* any source interface */
endpoints.sae_srcif = 0;

/* any address of the client */
endpoints.sae_srcaddr = NULL;
endpoints.sae_srcaddrlen = O;
/* server address */
endpoints.sae_dstaddr = (struct sockaddr *)

Special AF

Other system

endpoints.sae_dstaddrlen =

int rc = connectx(s, &endpoints, SAE_ASSOCID_ANY,
0, NULL, O, NULL, NULL);

Outline

* Multipath TCP

* The proposed socket API

Why using socket options ?

getsockopt and setsockopt are well-
known and extensible

Relatively easy to implement a new socket
option

Can pass information from app to stack as
memory buffer

Can retrieve information from stack to app as
memory buffer

The MPTCP socket options

MPTCP GET SUB IDS

— Retrieve the ids of the different subflows
MPTCP_GET_SUB_TUPLE
— Retrieve the endpoints of a specific subflow

MPTCP_OPEN_SUB _TUPLE
— Create a new subflow with specific endpoints

MPTCP_CLOSE_SUB_ID

— Closes one of the established subflows

MPTCP_SUB_GETSOCKOPT and
MPTCP_SUB_SETSOCKOPT

— Apply a TCP socket option on a specific subflow

Currently established subflows

int 1i;

unsigned int optlen;

struct mptcp sub ids *ids;
optlen = 42; // must be large enough

ids = (struct mptcp sub ids *) malloc(optlen);

err=getsockopt (sockfd, IPPROTO TCP,
MPTCP GET SUB_IDS, ids, &optlen);

for(i = 0; i < ids->sub_count; i++){
printf("Subflow id : %i\n",

ids->sub_status[i].id);

What are the endpoints of a subflow ?

unsigned int optlen;
struct mptcp sub tuple *sub tuple;

optlen = 100; // must be large enough
sub tuple = (struct mptcp sub tuple *)malloc (0Oy

Local endpoint

sub tuple->id = sub_id;

getsockopt(sockfd, IPPROTO TCP, MP
sub tuple, &optlen);

sin = (struct sockaddr in*) &sub tuple->addrs[0];

“GET_SUB_TUPLE,

printf("\tip src : %s src port : %$hu\n", inet ntoa(sin->sin addr),
ntohs(sin->sin port));

(struct sockaddr in*) &sub tuple->addrs[1l];

sin

printf("\tip dst : %s dst port : %$hu\n", inet n
ntoh

Remote endpoint

a(sin->sin_addr),
->sin port));

Creating a subflow

unsigned int optlen;
struct mptcp sub tuple *sub tuple;
struct sockaddr in *addr;

Local endpoint

optlen = sizeof(struct mptcp sub tuple
2 * sizeof(struct sockaddr

sub tuple = malloc(optlen);

sub tuple->id = 0; sub tuple->prio = 0;

addr = (struct sockaddr in*) &sub tuple->addrs[0];
addr->sin family = AF INET;

addr->sin port = htons(12345);

inet pton(AF_INET, "10.0.0.1", &addr->sin_addr);

addr (struct sockaddr in*) &sub tuple->addrs[1l];

addr->sin family = AF_ INET;

addr->sin port = htons(1234); .

inet pton(AF_ INET, "10.1.0.1", &addr->sin addr); Remote endpomt

error = dJetsockopt(sockfd, IPPROTO TCP,
MPTCP_OPEN_SUB_TUPLE, sub tuple, &optlen);

Utilization of the socket API

3G celltower

'
mmmmm -

'
'

-
IP 5.6. =

MPTCP enabled applications will be able to accurately
control their usage of the cellular and WiFi interfaces

Conclusion and next steps

 Multipath TCP is getting deployed
— Special applications (Siri) and on middleboxes

* Socket API will enable application developers to
take full control of the underlying MPTCP

— Create/delete/query subflows, apply options

— Next steps

* non-blocking I/O and events with
select, recvmsg and sendmsg

* Address management and advertisement
 More options to control stack (e.g. scheduler)

* Cooperation with application developers

