
A NEATWay to Browse the Web
Felix Weinrank

Münster University of Applied
Sciences

Karl-Johan Grinnemo
Karlstad University

Zdravko Bozakov
Dell EMC Research Europe

Anna Brunstrom
Karlstad University

Thomas Dreibholz
Simula Research Laboratory

Gorry Fairhurst
University of Aberdeen

Per Hurtig
Karlstad University

Naeem Khademi
University of Oslo

Michael Tüxen
Münster University of Applied

Sciences

ABSTRACT
There is a growing concern that the Internet transport layer has
become ossi�ed in the face of emerging novel applications, and
that further evolution has become very di�cult. The NEAT system
is a novel and evolvable transport system that decouples applica-
tions from the underlying transport layer and network services.
In so doing, it facilitates dynamic transport selection. This demo
shows how the NEAT system is able to dynamically select the most
appropriate transport solution for the Mozilla Firefox web browser.

KEYWORDS
NEAT, ossi�cation, transport selection, transport service, SCTP,
TCP

1 INTRODUCTION
The Internet is often seen as having a common network layer and
two widely deployed transport protocols, TCP [7] and UDP [6],
with other transports, such as SCTP [9], struggling to �nd broad
deployment. In line with ongoing standardization e�orts within
the Transport Services (TAPS) working group at the IETF [10], the
NEAT system [4, 8] challenges transport-layer ossi�cation by pro-
viding an API that is oblivious to speci�c protocols and instead fo-
cuses on requested transport services. To obtain a transport service,
applications provide NEAT information about the remote peer and
their service requirements. Based on this information, pre-speci�ed
policies, and measured network conditions, NEAT establishes and
con�gures appropriate network connections.

In this demo, we demonstrate how a web browser, the Mozilla
Firefox web browser, leverages the dynamic transport selection of
NEAT, and in so doing is able to dynamically select the transport
solution that gives the shortest latency. Particularly, we show how
NEAT assists Firefox to use the SCTP transport protocol and its
Concurrent Multipath Transfer (CMT) Extension [3] when SCTP
is available and works along the network paths between the end-
points.

2 THE NEAT SYSTEM ARCHITECTURE
Figure 1 illustrates the NEAT system. Applications access NEAT
via an event-driven API. The API interfaces the NEAT User Module,

ANRW’17, Prague, Czech Republic
2017. 978-x-xxxx-xxxx-x/YY/MM. . . $15.00
DOI: 10.1145/nnnnnnn.nnnnnnn

UDP

IPv4/IPv6

Application

NEAT API

TCP SCTP New	
Transport

TCP SCTP New	
Transport

NEAT User Module Policy	Manager
CIBPIB

Figure 1: The architecture of the NEAT system.

which constitutes the core of the system. The NEAT User Module is
designed to be portable across di�erent operating systems and net-
work stacks. One of its primary responsibilities is to select the most
appropriate transport solution for a requested transport service. At
the core of this selection process is the Policy Manager (PM).

The PM has a repository of collected policies, the Policy Informa-
tion Base (PIB), where each policy consists of a set of rules linking
a set of matching requirements to a set of preferred or mandatory
transport characteristics. To implement the policies, the PM may
access a repository storing dynamic information collected about
available interfaces and the paths towards destination endpoints,
the Characteristics Information Base (CIB). On the basis of its poli-
cies, the PM creates a list of candidate transport solutions, sorted in
order of appropriateness/priority, to use for a requested transport
service.

3 DYNAMIC TRANSPORT SELECTION IN
NEAT

The list of candidate transport solutions created by the PM is sup-
plied to the Happy Eyeballs building block of the NEAT User Mod-
ule, whose core functions are described in an IETF Internet Draft [2].

Happy Eyeballs traverses the candidate list, and makes asynchro-
nous connection attempts for each candidate transport solution
(Algorithm 1). A lower-priority transport solution is delayed with
respect to a higher-priority solution. The length of the delay de-
pends on the priority. In the callback routine that is invoked when a
connection attempt returns, the outcome of the connection attempt
(success or failure) is cached by the PM.

ANRW’17, July 2017, Prague, Czech Republic F. Weinrank et al.

Algorithm 1 NEAT Happy Eyeballs Algorithm
procedure HappyEyeballs(in listOfCandidates : list of transport solutions)
Require: listOfCandidates sorted in priority order and len(listOfCandidates) > 0
currentCandidate← listOfCandidates.�rst()
repeat
if getPriority(currentCandidate) > 0 then

delta← convertToTimeInterval(getPriority(currentCandidate))
scheduleAt(now() + delta,

doAsynchConnectionAttempt(currentCandidate, connectionCallback))
else

doAsynchConnectionAttempt(currentCandidate, connectionCallback)
end if
currentCandidate← listOfCandidates.nextCandidate(currentCandidate)

until currentCandidate = endOfList(listOfCandidates)
end procedure

procedure ConnectionCallback(in candidate : transport solution,
out connection : transport connection)

if connection , NONE then
policyManager.cacheResultConnectionAttempt(candidate, SUCCESS)

else
policyManager.cacheResultConnectionAttempt(candidate, FAILURE)

end if
end procedure

Web Client
(FreeBSD)

Web Server
(FreeBSD)

Dummynet Traffic Shaper
(FreeBSD)

Mozilla Firefox thttpd

10 Mbit/s

10 Mbit/s

10 Mbit/s

10 Mbit/s

Figure 2: Demo of Mozilla Firefox over NEAT.

To avoid wasting networking resources by routinely making
simultaneous connection attempts, the Happy Eyeballs building
block instructs the PM to cache the outcome of previous connection
attempts. The caching lifetime is part of the system con�guration
of NEAT. Cached connection attempts are valid for a pre-set time
after which they become invalid and have to be repeated. Our
experimental work [5] suggests a signi�cant reduction in terms of
CPU load with caching. We observed that the CPU load decreases
linearly with increasing cache hit-rate, and resulted in a more than
40% reduction of CPU load for unencrypted tra�c and almost a
20% reduction for encrypted tra�c. In terms of memory, our work
reported in [5] concluded that Happy Eyeballs only has a marginal
impact on kernel memory usage.

4 FAST FILE DOWNLOADS IN MOZILLA
FIREFOX OVER NEAT

In our demo, we show how the NEAT system enables the Mozilla
Firefox web browser to choose the transport solution that o�ers the
fastest �le download times. Figure 2 depicts the demo setup. The
setup comprises a client machine running a version of the Mozilla
Firefox web browser modi�ed to work over the NEAT system; a
server machine running the thttpd [11] web server, a web server that
supports both TCP and SCTP; and, in between these two machines, a
Dummynet [1] tra�c shaper. The client-side NEAT system employs
a policy that for low-latency tra�c, such as web tra�c, gives priority
to SCTP over TCP. All machines employ FreeBSD and thus support
both TCP and SCTP. The Dummynet tra�c shaper is operated
through a web application, Happy BlueBox, that makes it easy to

enable and disable SCTP tra�c through the shaper. As follows
from Figure 2, there are two 10-Mbit network paths between the
client and server machines, in practice this mean that TCP is able to
sustain a throughput of around 9Mbit/s over each of the network
paths.

Initially SCTP tra�c is disabled, and �le download takes place
over TCP and a single network path. As a result, the throughput
peaks at about 9Mbit/s, and we experience noticeable download
delays with �les of size 32Mbytes and larger. Next, SCTP is en-
abled; SCTP, via its CMT extension, sets up a dual-path association
between the client and server and in so doing doubles the available
bandwidth to 18Mbit/s, and more or less halves the �le download
times for larger �les.

5 CONCLUSIONS
This demo shows how the NEAT system is able to shorten the
�le download times of a web browser —the Mozilla Firefox web
browser— by dynamically selecting the most appropriate transport
solution. The demo illustrates only a subset of the NEAT capabili-
ties, with focus on the Happy Eyeballs mechanism. For example,
it does not show how information from CIB sources may modify
candidate transport solutions, and how NEAT may interact with
SDN controllers to con�gure transport parameters, or detect tra�c
�ows that need particular treatment, e.g., ’elephant’ �ows.

ACKNOWLEDGMENTS
This work has received funding from the European Union’s Horizon
2020 research and innovation programme under grant agreement
No. 644334 (NEAT). The views expressed are solely those of the
author(s).

REFERENCES
[1] Marta Carbone and Luigi Rizzo. 2010. Dummynet Revisited. SIGCOMM Comput.

Commun. Rev. 40, 2 (April 2010), 12–20. DOI:http://dx.doi.org/10.1145/1764873.
1764876

[2] Karl-Johan Grinnemo, Anna Brunstrom, Per Hurtig, Naeem Khademi, and
Zdravko Bozakov. 2017. Happy Eyeballs for Transport Selection. Internet-Draft
draft-grinnemo-taps-he-02. Internet Engineering Task Force. https://datatracker.
ietf.org/doc/html/draft-grinnemo-taps-he-02 Work in Progress.

[3] J. R. Iyengar, P. D. Amer, and R. Stewart. 2006. Concurrent Multipath Transfer
Using SCTP Multihoming Over Independent End-to-End Paths. IEEE/ACM
Transactions on Networking 14, 5 (Oct 2006), 951–964.

[4] N. Khademi, D. Ros, M. Welzl, Z. Bozakov, A. Brunstrom, G. Fairhurst, K. J.
Grinnemo, D. Hayes, P. Hurtig, T. Jones, S. Mangiante, M. Tuxen, and F. Weinrank.
2017. NEAT: A Platform- and Protocol-Independent Internet Transport API. IEEE
Communications Magazine 55, 6 (2017), 46–54.

[5] G. Papastergiou, K.-J. Grinnemo, A. Brunstrom, D. Ros, M. Tüxen, N. Khademi,
and P. Hurtig. 2016. On the Cost of Using Happy Eyeballs for Transport Protocol
Selection. In Proceedings of the 2016 Applied Networking Research Workshop
(ANRW). Berlin, 45–51.

[6] J. Postel. 1980. User Datagram Protocol. RFC 768 (INTERNET STANDARD).
(Aug. 1980). http://www.ietf.org/rfc/rfc768.txt

[7] J. Postel. 1981. Transmission Control Protocol. RFC 793 (INTERNET STANDARD).
(Sept. 1981). http://www.ietf.org/rfc/rfc793.txt Updated by RFCs 1122, 3168, 6093,
6528.

[8] NEAT Project. 2017. NEAT GitHub Repository. (2017). https://github.com/
NEAT-project/neat/ Accessed on June 22, 2017.

[9] R. Stewart. 2007. Stream Control Transmission Protocol. RFC 4960 (Proposed
Standard). (Sept. 2007). http://www.ietf.org/rfc/rfc4960.txt Updated by RFCs
6096, 6335, 7053.

[10] TAPS. 2015. IETF Transport Services (TAPS) Working Group Charter. (2015).
https://datatracker.ietf.org/doc/charter-ietf-taps/

[11] Michael Tuexen. 2017. thttpd with SCTP Support. (2017). https://github.com/
nplab/thttpd

http://dx.doi.org/10.1145/1764873.1764876
http://dx.doi.org/10.1145/1764873.1764876
https://datatracker.ietf.org/doc/html/draft-grinnemo-taps-he-02
https://datatracker.ietf.org/doc/html/draft-grinnemo-taps-he-02
http://www.ietf.org/rfc/rfc768.txt
http://www.ietf.org/rfc/rfc793.txt
https://github.com/NEAT-project/neat/
https://github.com/NEAT-project/neat/
http://www.ietf.org/rfc/rfc4960.txt
https://datatracker.ietf.org/doc/charter-ietf-taps/
https://github.com/nplab/thttpd
https://github.com/nplab/thttpd

	Abstract
	1 Introduction
	2 The NEAT System Architecture
	3 Dynamic Transport Selection in NEAT
	4 Fast File Downloads in Mozilla Firefox over NEAT
	5 Conclusions
	Acknowledgments
	References

