
copycat: Testing Differential Treatment
of New Transport Protocols in the Wild

Korian Edeline∗, Mirja Kühlewind‡, Brian Trammell‡, Benoit Donnet∗
∗ Université de Liège, Montefiore Institute – Belgium
‡ ETH Zurich, Networked Systems Group – Switzerland

ABSTRACT
Recent years have seen the development of multiple transport

solutions to address the ossification of TCP in the Internet, and
to ease transport-layer extensibility and deployability. Recent ap-
proaches, such as PLUS and Google’s QUIC, introduce an upper
transport layer atop UDP; their deployment therefore relies on UDP
not being disadvantaged with respect to TCP by the Internet.

This paper introduces copycat, a generic transport protocol test-
ing tool that highlights differential treatment by the path in terms
of connectivity and QoS between TCP and a non-TCP transport pro-
tocol. copycat generates TCP-shaped traffic with custom headers,
and compares its performance in terms of loss and delay with TCP.
We present a proof-of-concept case study (UDP vs. TCP) in order
to answer questions about the deployability of current transport
evolution approaches, and demonstrate the extent of copycat’s
capabilities and possible applications.

While the vast majority of UDP impairments are found to be
access-network linked, and subtle impairment is rare, middleboxes
might adapt to new protocols that would then perform differently in
the wild compared to early deployments or controlled environment
testing.

CCS CONCEPTS
•Networks→Transport protocols;Networkmeasurement;

KEYWORDS
copycat, differential treatment, UDP, ossification

ACM Reference format:
Korian Edeline∗, Mirja Kühlewind‡, Brian Trammell‡, Benoit Donnet∗ ∗
Université de Liège, Montefiore Institute – Belgium ‡ ETH Zurich, Net-
worked Systems Group – Switzerland . 2017. copycat: Testing Differential
Treatment of New Transport Protocols in the Wild. In Proceedings of ANRW
’17, Prague, Czech Republic, July 15, 2017, 7 pages.
DOI: 10.1145/3106328.3106330

1 INTRODUCTION
Most Internet applications today are built on top of the Trans-

mission Control Protocol (TCP), or some session-layer protocol

Permission to make digital or hard copies of all or part of this work for personal or
classroom use is granted without fee provided that copies are not made or distributed
for profit or commercial advantage and that copies bear this notice and the full citation
on the first page. Copyrights for components of this work owned by others than ACM
must be honored. Abstracting with credit is permitted. To copy otherwise, or republish,
to post on servers or to redistribute to lists, requires prior specific permission and/or a
fee. Request permissions from permissions@acm.org.
ANRW ’17, Prague, Czech Republic
© 2017 ACM. 978-1-4503-5108-9/17/07. . . $15.00
DOI: 10.1145/3106328.3106330

that uses TCP, such as the Hypertext Transfer Protocol (HTTP) or
WebSockets. Indeed, the ubiquity and stability of TCP as a common
facility that handles the hard problems of reliability and congestion
control is a key factor that has led to the massive growth of the
Internet.

However, not every application benefits from the single-stream,
fully-reliable service provided by TCP. In addition, the ubiquitous
deployment of network address translators (NATs) and firewalls
that only understand a limited set of protocols make new protocols
difficult to deploy. Previous attempts to deploy new protocols such
as SCTP [21] were hindered by this ossification [8], as well as by the
difficulty of rapid deployment of new kernel code across multiple
platforms. The deployment of middleboxes that “understand” TCP
also limit the ability to deploy new TCP options and features [9].
Much of the design work in Multipath TCP [4, 5], for example,
addressed middlebox detection and avoidance.

This has led to a current trend in transport protocol design to use
UDP encapsulation to solve this problem. Google’s QUIC [6] and
the WebRTC data channel [10] both use UDP as an outer transport
protocol. In both cases, the transport protocol dynamics (connec-
tion establishment, reliability, congestion control, and transmission
scheduling) are handled by the inner protocol. In the case of the
WebRTC data channel, this is SCTP over Datagram Transport Layer
Security (DTLS) [26]; in the case of QUIC, it is the QUIC transport
protocol itself. This is a new kind of encapsulation. In contrast to
traditional tunneling, this approach borrows the “wire image” of
UDP for two key benefits: userspace deployability of new trans-
ports, due to the ubiquitous availability of UDP sockets for unpriv-
ileged, userspace programs; and NAT/firewall traversal, as most
such devices recognize UDP ports. The Path Layer UDP Substrate
(PLUS) effort within the IETF [25] generalizes this approach for
new transport protocols.

This situation pleads for protocol deployability and performance
assessment. To this end, a widespread methodology consists in
implementing new protocols in network simulators to investigate
their characteristics. While this solution can be advantageous, it
only provides a partial view as the way the actual network behaves
is far from the theoretical view provided by simulators.

Therefore, in this paper, we advocate for “in-the-wild” protocol
testing in addition to simulations and controlled environments and
introduce a novel measurement tool called copycat.1 It aims at
evaluating experimental protocols’ deployability, or the extensibil-
ity of existing ones by comparing their processing by the network,
in terms of connectivity and performance, with regular TCP con-
nections.

1Sources are freely available at https://github.com/mami-project/copycat

https://github.com/mami-project/copycat

ANRW ’17, July 15, 2017, Prague, Czech Republic K. Edeline et al.

copycat creates TCP traffic with another protocol’s (UDP or
non-UDP) wire image, and performs full-mesh measurements on
test networks in order to determine if differential treatment of
experimental protocols’ and TCP packets might disadvantage non-
TCP congestion-controlled traffic. copycat is generic as it allows
for testing a wide variety of transport protocols without the need
to actually implement them. It is thus suitable for immediate de-
ployment on any distributed measurement testbed. It also eases
the network traces analysis by working only with TCP-controlled
flows.

To demonstrate copycat capabilities, we investigate the UDP
vs. TCP scenario by deploying copycat on PlanetLab and cloud
provider Digital Ocean [3]. In summary, we see evidence of com-
plete blocking of UDP for between 2% and 4% of terrestrial ac-
cess networks, and find that blocking is primarily linked to ac-
cess network; these results are in line with reported QUIC per-
formance [22]. We note that these networks are not uniformly
distributed throughout the Internet: UDP impairment is especially
concentrated in enterprise networks and networks in geographic
regions with otherwise-challenged connectivity. Where UDP does
work on these terrestrial access networks, we see no evidence of
systematic impairment of traffic with UDP headers. The strategy
taken by current efforts to encapsulate new transports over UDP is
therefore fundamentally sound.

The remainder of this paper is organized as follows: Sec. 2 po-
sitions this work regarding the state of the art; Sec. 3 describes
copycat implementation and how to use it; Sec. 4 demonstrates
copycat capabilities through a UDP vs. TCP use case; finally, Sec. 5
concludes this work by summarizing its main achievements

2 RELATEDWORK
Many network measurement tools have been proposed to eval-

uate reachability or transport protocol performance and analysis.
Netalyzr [12] determines whether a particular service, identified
by its port number and transport protocol, is reachable. iPerf [23]
computes maximum achievable bandwidth alongside other QoS
metrics for TCP, UDP, or SCTP. tbit [14] infers the impact of
current network environment on TCP behavior. Happy Eyeballs
algorithm [27] helps dual-stack applications to choose the network
protocol to use between IPv4 and IPv6 while avoiding connectivity
problems, or to select appropriate and supported transport proto-
cols [17]. More recently, PATHspider [13] performs A/B testing to
identify path transparency impairments.

Sarma evaluates TCP and UDP performances through simulation
in a particular context (QoS) considering two queuing mechanisms:
RED and Drop Tail [20]. Bruno et al. develop models for analyzing
and measuring UDP/TCP throughput in WiFI networks [2]. While
some of these results provide insights and background knowledge
on aspects of UDP as well as TCP performance, they cannot be used
to answer the question of differential treatment between two proto-
cols in the Internet (covering different access network technologies),
unlike copycat.

Hätönen et al. [7] investigate differential treatment by NATs.
They look at NAT timeouts on a variety of 34 home gateway devices
available in 2010, and found a median idle timeout for bidirectional
UDP traffic of about 3 minutes, with a minimum timeout of 30

seconds. In contrast, median idle timeout for TCP was 60 minutes,
with a minimum of 5 minutes.

Network and transport-layer performance in general is a well-
studied field: Qian et al. [19] look at the characteristics of measured
TCP traffic. Paxson et al. [18] focuses on packet dynamics of TCP
bulk transfers between a limited set of Internet sides. Pahdye et
al. [16] investigate TCP behavior of web servers, assuming no in-
terference in the network. Xu at al. [28] use UDP-based traffic to
evaluate characteristics of cellular networks. They also test TCP
throughput to ensure that no UDP throttling was performed in the
tested network that would tamper their results. Melia et al. [15]
evaluate TCP and UDP performance in an IPv6-based mobile envi-
ronment.

Packet encapsulation for network measurements as employed by
copycat is a common technique, as well, particularly for middlebox
identification. For instance, the TCPExposure [9] client sends TCP
packets over raw IP sockets toward a user controlled server. The
server sends back received and to-be-sent headers as payload so
that the client can compare what was sent to what was received.

copycat is the first attempt to directly evaluate performance
differences of congestion-controlled, reliable traffic based solely
on the wire image (i.e., whether a TCP, UDP, or another protocol
header is seen on the traffic by the network).

3 COPYCAT
In this section, we introduce copycat, our generic, multiplat-

form, and lightweight connectivity and Quality of Service (QoS)
differential treatment measurement tool. It is able to compare many
different protocols statelessly without having to implement them
or having to write code. It supports multiple operating systems, it
is PlanetLab-compliant, and it minimizes the overhead introduced
by tunneling.

copycat simultaneously runs pairs of flows between two end-
points, one is a reference TCP flow and the other one is a TCP
flow using a custom header as an “outer” transport, to evaluate
differences in connectivity and QoS due to differential treatment
based on transport protocol. This tunneled TCP flow emulates the
wire image of the new protocol to the network but retains the TCP
traffic characteristics to enable a valid comparison between the two
tested flows. The two flows run in parallel with the exact same
4-tuples, to obtain flows with the most similar possible treatment
from the network apart from middleboxes, but with different trans-
port headers. By comparing performances of these two flows, we
are able to isolate differences that can be attributed to differential
treatment by the path.

copycat encapsulation details are shown in Fig. 1. Reference
refers to the regular TCP flow used as a groundtruth for flow per-
formance comparison, while Experimental is the custom flow,
TCP-controlled by the tunneled IP and TCP headers, whose outer
encapsulation, entirely specified in command lines. It can be a
UDP header, plus an optional additional header placed inside the
UDP datagram, before the tunneled headers. This encapsulation
can be used for testing varieties of protocols relying on UDP (e.g.,
PLUS [25], QUIC [11]). Or it can also be a custom, non-UDP trans-
port header with any IP protocol number. This encapsulation can be

copycat: Testing Differential Treatment
of New Transport Protocols in the Wild ANRW ’17, July 15, 2017, Prague, Czech Republic

Figure 1: copycat encapsulations.

Figure 2: copycatmeasurement methodology.

used for stateless testing of many IP transport protocols (DCCP [11],
native SCTP [21], UDP options [24]).

As shown in Fig. 2, the custom flow is obtained by tunneling a
TCP flow. To achieve this, copycat first creates a tun virtual net-
work interface that simulates a network layer device and operates
at Layer 3. In our measurement setup, each node runs both the
copycat client and the server. On the client side, the TCP client
connects to its peer via the Internet-facing interface and receives
data from it, writing it to the disk. The custom client consists of
the TCP client bound to the tun interface, which is in turn bound
by copycat to either a UDP or a raw socket on the Internet-facing
interface. copycat thus works as a tunnel endpoint, encapsulating
TCP packets from tun in UDP or custom headers, and decapsulat-
ing received UDP or custom packets back to TCP packets to tun.
The server-side consists of a similar arrangement, listening for con-
nections from clients and sending data to them. The client waits
for both transfers, via TCP and TCP-controlled UDP or custom
protocol, to be completed before connecting to the next destination.

copycat offers modularity by allowing the user to configure
multiple parameters such as the role of each node (client, server,
or both), the flow scheduling, and the IP version. The flow sched-
uling can either be to run both reference and experimental flows
in parallel or to run one after the other has completely finished,
sequentially. The IP version can either be IPv4, IPv6, or both. For the

latter, each clients opens two pairs of flow instead of one, the first
consists in an IPv6 reference flow and an IPv4 experimental flow
and the second in a IPv4 reference flow and an IPv6 experimental
flow.

A copycat measurement campaign involves two types of actors:
a set of servers hosting data in the form of simple files and a set
of clients sequentially connecting to each server to download the
files. The client and server sets can be identical (See Sec. 4.1 for a
complete case study).

To avoid unwanted fragmentation and ICMP message-too-
long errors, and to ensure that packets from both tunneled and
non-tunneled flows are equally sized, the Maximum Segment Size
(MSS) of the tunneled TCP flow is decreased by the size of the
tunnel headers (IP header + transport headers).

copycat is coded in C2 to minimize the tunneling overhead. I/O
multiplexing is handled using select(). All network traces are
captured at the internet-facing interface using libpcap on both
clients and servers.

4 UDP FOR INTERNET TRANSPORT
EVOLUTION

In this section, we show how copycat can find a suitable usage
in comparing the performance of UDP encapsulation (i.e., TCP
inside UDP) with regular TCP. In particular, with copycat, we are
able to determine whether UDP encapsulation will work in the
present Internet, and that connectivity and performance of UDP
traffic are not disadvantaged with respect to TCP based only on the
presence of a UDP header. copycat can be used to create TCP traffic
with UDP’s wire image, and perform full-mesh measurements on a
wide variety of test networks, in order to determine if differential
treatment of UDP and TCP packets might disadvantage congestion-
controlled traffic with UDP headers.

In particular, Sec. 4.1 explains how measurements were per-
formed. Results (UDP blocking, throughput, and initial latency)
are presented in Sec. 4.2 to Sec. 4.4. Finally, in Sec. 4.5, we discuss
lessons learned from this case study.

4.1 Measurement Setup
We tested the viability of UDP for transport evolution with

copycat by straightforwardly using the UDP encapsulation mode
with no extra header.

We deployed copycat on the PlanetLab distributed testbed by
selecting 93 nodes (one per subnetwork) from the entire pool (153)
of available nodes between March 6th and April 23rd, 2016. The se-
lected nodes are located in 26 countries across North America (44),
Europe (29), Asia (13), Oceania (4), and South America (3). Consid-
ering PlanetLab port binding restrictions (e.g., 80, 8000, and 53, 443
on certain nodes), we chose seven ports–53, 443, 8008, 12345, 33435,
34567, and 54321– respectively DNS, HTTPS, HTTP alternate, a
common backdoor, the Atlas UDP traceroute default, and an unused
and an unassigned port, to maximize routers policy diversity.

For each port and pair of nodes, we generated flows of different
sizes. The smallest flow is calibrated not to exceed the TCP initial
window size, to ensure that all data segments will be sent at once.

2See https://github.com/mami-project/copycat

https://github.com/mami- project/copycat

ANRW ’17, July 15, 2017, Prague, Czech Republic K. Edeline et al.

Dataset Throughput (kB/s) Latency (ms) Connectivity
< 200 > 200 < 50 > 50 # Probes No UDP Connectivity

flows median # flows median # flows median # flows median total failed % of probes
PlanetLab 740,721 0.05 34,896 0.16 745,947 0.00 29,370 -1.65 30,778 825 2.66%
DO v4 12,563 0.03 3,637 -0.37 9,381 -0.02 6,819 -0.44 135 0 0.00%
DO v6 15,459 0.07 224 -0.16 15,656 0.00 27 3.63 135 0 0.00%

Table 1: Raw number of bias measurements (throughput and initial latency) per sub dataset (“DO” stands for Digital Ocean).
The 50ms cut-off roughly corresponds to inter-continental versus intra-continental latency. Global overview of UDP blocking
is also provided.

NA EU AS O
clients (by continents and countries)

NA

EU

AS

O

se
rv

er
s

(b
y

co
nt

in
en

ts
an

d
co

un
tr

ie
s)

−1.0

−0.8

−0.6

−0.4

−0.2

0.0

0.2

0.4

0.6

0.8

1.0

co
nn

ec
ti

vi
ty

bi
as

Figure 3: Connectivity bias among PlanetLab nodes, exclud-
ing ports 53 and 443. Positive (blue) values mean UDP is
better-connected than TCP. Black dots mean “no connectiv-
ity” (for both UDP and TCP).

Then, we increase the size of the flows by arbitrary factors to ob-
serve the impact of differential treatment for congestion-controlled
traffic with larger flows. Overall, we generated 20 pairs of flows of
1, 3, and 30 TCP initial windows, and 10 pairs of flows of 300 and
1, 500 TCP initial windows, for a total of 1,634,518 flows.

We also deployed copycat on 6 Digital Ocean (DO) nodes, lo-
cated in six countries across North America (2), Europe (3), and Asia
(1). Given the less restrictive port binding policies and the more
restrictive bandwidth occupation policies, we tested ports 80 and
8000 in addition of the PlanetLab ports. For each port, we generated
20 pairs of flows of 1, 3, and 30 TCP initial windows size between
May 2nd and 12th, 2016. We repeated the same methodology for
both IPv4 and IPv6. This dataset consists in 32,400 IPv4 and 31,366
IPv6 flows.3

Table 1 provides an overview on our main results. In summary,
we show that, aside from blocking of UDP on certain ports, as well
as relatively rare blocking of all UDP traffic on about one in thirty
access networks, UDP is relatively unimpaired in the Internet. We
explore the details of the table and additional measurement results
in the subsections below.

4.2 UDP Blocking
Fig. 3 shows an heatmap describing connection bias per path

in the copycat results. A bias of +1.0 (blue) means all UDP con-
nections between a given receiver (X-Axis) and sender (Y-Axis)
succeeded while all TCP connections failed, and a bias of -1.0 (red)
means all TCP connections succeeded while all UDP connections
3The dataset is available at https://observatory.mami-project.eu/

port UDP blocked # probes
534 0.55% 1,829
4435 4.12% 3,034
8008 2.60% 5,307
12345 2.45% 5,233
33435 2.77% 5,309
34567 2.44% 5,115
54321 3.07% 4,951

Table 2: Percentage of probes (identified as 3-tuples (IPsrc,
IPdst, Portdst)) on PlanetLab, that have never seen a UDP
connection but at least one TCP connection.

failed. The axes are arranged into geographic regions: North Amer-
ica (NA), Europe (EU), Asia (AS), Oceania and South America (O).
The connectivity matrix for PlanetLab nodes provided by Fig. 3 sug-
gests that impairment is access-network linked. One node blocks
all inbound and outbound UDP traffic, and has TCP connectivity
problems to some servers as well. Otherwise, transient connectivity
impairment shows a clear dependency on node, as opposed to path.

Table 2 provides the percentage of probes that have never seen
a UDP connection but, at least, one TCP connection. Statistics
are provided by port, as measured by copycat on PlanetLab. As
shown, UDP is more blocked than TCP but to a small extend. UDP
is blocked in, roughly, between 1% and and 5% of the probes. We
observed two China-based nodes blocking all UDP traffic from one
node also based in China. This advocates for a fall-back mechanism
when running the Internet over UDP (i.e., switching back from
UDP-based encapsulation to native TCP packets). Note that quite
large absence of UDP connection for port 443 (QUIC) is mainly
due to PlanetLab port binding restrictions on nodes without any
connectivity problem. Anecdotally, we found one New Zealand
node blocking both UDP and TCP traffic from all China-based
nodes.

4.3 Throughput
To evaluate the impact of transport-based differential treatment

on throughput, we introduce the relative throuдhput_bias metric
for each pairs of concurrent flows. This is computed as follows:

throuдhput_bias =
(throuдhputudp − throuдhputtcp)

min (throuдhputtcp, throuдhputudp)
× 100.

(1)

4Node pool reduced to 41 because of PlanetLab port 53 usage policies.
5Node pool reduced to 55 because of PlanetLab port 443 usage policies.

https://observatory.mami-project.eu/

copycat: Testing Differential Treatment
of New Transport Protocols in the Wild ANRW ’17, July 15, 2017, Prague, Czech Republic

−20 −16 −12 −8 −4 0 4 8 12 16 20

throughput bias (%)

0.0

0.2

0.4

0.6

0.8

1.0

C
D

F

Lower
UDP throughput

Higher
UDP throughput

PlanetLab < 200KB/sec
PlanetLab > 200KB/sec
DO IPv4 < 200KB/sec
DO IPv4 > 200KB/sec
DO IPv6

Figure 4: Relative throughput bias, as measured by copycat
(“DO” stands for Digital Ocean). Positive values mean UDP
has higher throughput. DO IPv6 has not been split in two
due to lack of enough values (see Table 1).

NA EU AS O
clients (by continents and countries)

NA

EU

AS

O

se
rv

er
s

(b
y

co
nt

in
en

ts
an

d
co

un
tr

ie
s)

−5

−4

−3

−2

−1

0

1

2

3

4

5

th
ro

ug
hp

ut
bi

as
(%

)

Figure 5: Relative throughput bias among PlanetLab nodes
as measured by copycat. Positive (blue) values mean UDP
has higher throughput.

A positive value for throuдhput_bias means that UDP has a
higher throughput. A null value means that both UDP and TCP
flows share the same throughput.

Fig. 4 provides a global view of the throuдhput_bias . Dataset
has been split between flows < 200 KB/sec and flows > 200KB/sec,
except for Digital Ocean IPv6, as the number of measurements is
too small to be representative. Table 1 gives the size of each sub
dataset and the relative median bias for throughput and latency.

As observed, in general, there is no bias between UDP and TCP.
For both Digital Ocean dataset, the non-null biases are mostly
evenly distributed in favor and disfavor of UDP. In PlanetLab, we
observe an extreme case where TCP performs better than UDP, the
4% and 2% highest throuдhput_bias in absolute value are respec-
tively higher than 1% and 10%. As shown in Fig. 5, those extreme
cases, represented as dark red lines, are endpoint-dependent. We
also notice a single probe where the UDP throughput is better than
TCP (see Fig. 5). Consistently with UDP connectivity bias (see Fig. 3),
we do not see evidence on path dependency for throughput.

The loss rate of congestion controlled traffic in steady state,
where the link is fully utilized, is mostly determined by the con-
gestion control algorithm itself. Therefore, there is a direct relation
between throughput and loss. However, as TCP congestion control

−30 −20 −10 0 10 20 30

RTT bias (%)

0.0

0.2

0.4

0.6

0.8

1.0

C
D

F Higher UDP RTT Smaller UDP RTT

PlanetLab < 50ms
PlanetLab > 50ms
DO IPv4 < 50ms
DO IPv4 > 50ms
DO IPv6

Figure 6: UDP/TCP initial RTT_bias as measured by copycat
(“DO” stands for Digital Ocean). Positive values mean UDP
is faster. DO IPv6 has not been split in two due to lack of
enough values (see Table 1).

reacts only once per RTT to loss as an input signal, the actual loss
rate could still be different even if similar throughput is achieved.

Here, we understand loss as the percentage of flow payload lost,
computed from sequence numbers. A value, for instance, of 10% of
losses means thus that 10% of the flow payload has been lost.

Generally speaking, the loss encountered is quite low, given that
small flows often are not large enough to fully utilize the measured
bottleneck link. As expected based on the throughput observed,
we see no significant loss difference in both PlanetLab and Digital
Ocean when comparing TCP and UDP, except of 3.5% in favor of
UDP for the largest flow size (6MB). However, this is inline with a
slightly lower throughput caused by a slightly larger initial RTT,
as discussed in the next section.

4.4 Initial Latency
Since all copycat traffic is congestion controlled, throughput is

influenced by the end-to-end latency. We use initial RTT measured
during the TCP handshake as baseline for this metric.

In the fashion of throuдhput_bias (see Eqn. 1), we introduce the
relative RTT_bias metric for each pair of concurrent flows. This is
computed as follows:

RTT _bias =
(RTTtcp − RTTudp)

min (RTTtcp, RTTudp)
× 100. (2)

A positive value for RTT_bias means that UDP has a smaller
initial latency (i.e., performs better than TCP). A null value means
that both UDP and TCP flows share the same initial latency.

The median latency bias is also listed in in Table 1. For PlanetLab,
there is no latency bias for flows with an initial RTT of 50ms or
less and a slight bias towards higher latency for UDP for flows
with larger initial RTTs. For Digital Ocean we also observed a
slight bias towards higher latency for UDP for IPv4 and no bias
for IPv6 (considering 27 flows with a larger RTT than 50ms as not
representative). This is confirmed by the CDF shown in Fig. 6.

The 2% and 1% most biased flow pairs have an RTT_bias re-
spectively lower than -1% and -10%. For the Digital Ocean IPv4
campaign, 40% of the generated flows have an RTT_bias between
1% and 30% in absolute value. The difference between IPv4 and IPv6

ANRW ’17, July 15, 2017, Prague, Czech Republic K. Edeline et al.

on Digital Ocean appears to be due to the presence of a middlebox
interfering with all IPv4 traffic, both TCP and UDP.

This difference in latency also explains the slight throughput
disadvantage as seen in the previous section given latency results
follow nearly the same shape as the initial RTT (see Fig. 6).

4.5 Lessons Learned
In this case study, we asked the question “is UDP a viable basis

and/or encapsulation for deploying new transports in the Internet?”.
We focused on two aspects of the answer: connectivity and differen-
tial treatment of TCP and TCP-congestion-controlled UDP packets
to see if simply placing such traffic in UDP headers disadvantages
it. In this section, based on the copycat data presented above, we
discuss lessons learned.

First,UDP provides a viable common basis for new transport
protocols, but only in cases where alternatives exist on access
networks where UDP connectivity is unavailable or severely com-
promised. QUIC provides a good illustration here. It was developed
together with SPDY, which has been defined over TCP and TLS
as HTTP/2 [1], and its first target application is HTTP/2. Since
HTTP/2 has a natural fallback to TLS over TCP, this alternative
can be used on the 1 − 5% of networks where QUIC packets over
UDP are blocked or limited. However, this fallback approach limits
QUIC’s applicability to application layer protocols that can be made
run acceptably over TCP.

Second, the dataset collected with copycat provides evidence
that the vastmajority ofUDP impairments are access-network
linked, and that subtle impairment is rare. This means that ac-
curate fallback decisions are easy to arrive at – a connection racing
design similar to Happy Eyeballs [27] as used by QUIC is sufficient –
and can often be cached based on client access network as opposed
on access-network/server pair.

We made no attempt to confirm claims of defensive rate-limiting
of UDP traffic with this work, as doing so would in essence require
UDP-based denial of service attacks on the networks under mea-
surement. However, we note that Google reports a reduction in the
amount of UDP rate limiting they have observed since the begin-
ning of the QUIC experiment [22]. This makes sense: rate limitation
must necessarily adapt to baseline UDP traffic volumes, and as such
poses no limitation to the gradually increasing deployment of UDP-
based transport protocols. However, it also indicates the need for
work on mechanisms in these UDP protocols to augment the denial-
of-service protection afforded by rate-limiting approaches.

5 CONCLUSION
This paper introduced copycat, a novel measurement tool to

detect differential treatment by middleboxes of new transport pro-
tocols compared to TCP. copycat generates TCP-shaped traffic
with custom headers and compares it with standard TCP. One
of the key feature of copycat is that it easily allows research
to evaluate not only transport connectivity but also QoS charac-
teristics (e.g., throughput, loss, delay) while writing a minimum
amount of code. copycat is open-source and freely available (see
https://github.com/mami-project/copycat).

To demonstrate copycat capabilities, we focused on a simple
and straightforward question: “is UDP a viable basis and/or encap-
sulation for deploying new transports in the Internet?”. From our
measurements, we conclude that UDP is relatively unimpaired in
the Internet, despite blocking of UDP on certain ports as well as
relatively rare blocking of all UDP traffic on certain access networks.
This means that, indeed, running the Internet over UDP is globally
possible. Further, we find that impairments to UDP-based traffic are
access-network linked. Therefore, simple dynamic fallback mech-
anisms for UDP-encapsulated transports are a viable approach to
work around the vast majority of impairments encountered. A node
needs not measure or remember anything about its peers, but only
about its connectivity to the Internet, to determine when to fall
back.

copycat complements the set of existing measurement tools
as it can separate effects of differential network treatment from
differences in the traffic characteristics of new transport protocols
by using a tunneling approach. We have shown that copycat is
applicable to answer underlying measurement questions on con-
nectivity as well as QoS for UDP encapsulation as an approach
for deployment of new transports. Next we will perform further
testing to access the actual impairments and the prevalence of these
impairments for native deployment of new protocols, enabling new
possibilities in transport evolution and the development of more
advances fallback mechanisms.

ACKNOWLEDGMENTS
This project has received funding from the European Union’s

Horizon 2020 research and innovation program under grant agree-
ment No 688421. The opinions expressed and arguments employed
reflect only the authors’ views. The European Commission is not
responsible for any use that may be made of that information.

REFERENCES
[1] M. Belshe, R. Peon, and M. Thomson. 2015. Hypertext Transfer Protocol Version 2

(HTTP/2). RFC 7540. Internet Engineering Task Force.
[2] R. Bruno,M. Conti, and E. Gregori. 2008. Throughput Analysis andMeasurements

in IEEE 802.11 WLANs with TCP and UDP Traffic Flows. IEEE Transactions on
Mobile Computing 7, 2 (February 2008), 171–186.

[3] Digital Ocean. 2017. Simple Cloud Computing, Built for Developpers. (2017).
See https://www.digitalocean.com.

[4] A. Ford, C. Raiciu, M. Handley, S. Barre, and J. Iyengar. 2011. Architectural
Guidelines for Multipath TCP Development. RFC 6182. Internet Engineering Task
Force.

[5] A. Ford, C. Raiciu, M. Handley, and O. Bonaventure. 2013. TCP Extensions for
Multipath Operation with Multiple Addresses. RFC 6824. Internet Engineering
Task Force.

[6] R. Hamilton, J. Iyengar, I. Swett, and A.Wilk. 2016. QUIC: A UDP-Based Secure and
Reliable Transport for HTTP/2. Internet Draft (Work in Progress) draft-hamilton-
early-deployment-quic-00. Internet Engineering Task Force.

[7] S. Hätönen, A. Nyrhinen, L. Eggert, S. Strowes, P. Sarolahti, and M. Kojo. 2010.
An Experimental Study of Home Gateway Characteristics. In Proc. ACM Internet
Measurement Conference (IMC). 260–266.

[8] D. A. Hayes, J. But, and G. Armitage. 2009. Issues with Network Address Transla-
tion for SCTP. ACM SIGCOMM Computer Communication Review 39, 1 (January
2009), 23–33.

[9] M. Honda, Y. Nishida, C. Raiciu, A. Greenhalgh, M. Handley, and H. Tokuda. 2011.
Is It Still Possible to Extend TCP. In Proc. ACM Internet Measurement Conference
(IMC). 181–194.

[10] R. Jesup, S. Loreto, and M. Tuexen. 2015. WebRTC Data Channels. Internet Draft
(Work in Progress) draft-ietf-rtcweb-data-channel-13. Internet Engineering Task
Force.

[11] E. Kohler, M. Handley, and S. Floyd. 2006. Datagram Congestion Control Protocol
(DCCP). RFC 4340. Internet Engineering Task Force.

https://github.com/mami-project/copycat
https://www.digitalocean.com

copycat: Testing Differential Treatment
of New Transport Protocols in the Wild ANRW ’17, July 15, 2017, Prague, Czech Republic

[12] C. Kreibich, N. Weaver, B. Nechaev, and V. Paxson. 2010. Netalyzr: illuminating
the edge network. In Proc. ACM Internet Measurement Conference (IMC). 246–259.

[13] I. R. Learmonth, B. Trammell, M. Külewind, and G. Fairhust. 2016. PATHSpider: A
Tool for Active Measurement of Path Transparency. In Proc. Applied Networking
Research Workshop (ANRW). 62–64.

[14] A. Medina, M. Allman, and S. Floyd. 2004. Measuring Interactions Between Trans-
port Protocols and Middleboxes. In Proc. ACM Internet Measurement Conference
(IMC). 336–341.

[15] T. Melia, R. Schmitz, and T. Bohnert. 2004. TCP and UDP Performance Measure-
ments in Presence of Fast Handovers in an IPv6-Based Mobility Environment. In
Proc. World Telecommunications Congress (WTC).

[16] J. Pahdye and S. Floyd. 2001. On Inferring TCP Behavior. In Proc. ACM SIGCOMM.
[17] G. Papastergiou, K.-J. Grinnmo, A. Brunstrom, D. Ros, M. Tüxen, N. Khademi,

and P. Hurtig. 2016. On the Cost of Using Happy Eyeballs for Transport Protocol
Selection. In Proc. Applied Networking Research Workshop (ANRW).

[18] V. Paxson. 1997. End-to-End Internet Packet Dynamics. In Proc. ACM SIGCOMM.
[19] F. Qian, A. Gerber, Z. Mao, S. Sen, O. Spatscheck, and W. Willinger. 2009. TCP

Revisited: a Fresh Look at TCP in the Wild. In Proc. ACM Internet Measurement
Conference (IMC). 76–89.

[20] M. P. Sarma. 2013. Performance Measurement of TCP and UDP Using Different
Queuing Algorithm in High Speed Local Area Network. International Journal of

Future Computer and Communication 2, 6 (2013), 682.
[21] R. Stewart. 2007. Stream Control Transmission Protocol. RFC 4960. Internet

Engineering Task Force.
[22] I. Swett. 2016. QUIC Deployment Experience @Google. (July 2016). See

https://www.ietf.org/proceedings/96/slides/slides-96-quic-3.pdf.
[23] A. Tirumala, F. Qin, J. Dugan, J. Ferguson, and K. Gibbs. 2005. Iperf: the TCP/UDP

Bandwidth Measurement Tool. (2005). See http://dast.nlanr.net/Projects.
[24] J. Touch. 2016. Transport Options for UDP. Internet Draft (Work in Progress)

draft-touch-tsvwg-udp-options-02. Internet Engineering Task Force.
[25] B. Trammell and M. Kühlewind. 2016. Path Layer UDP Substrate Specification.

Internet Draft (Work in Progress) draft-trammell-plus-spec-00. Internet Engi-
neering Task Force.

[26] M. Tuexen, R. Seggelmann, and E. Rescorla. 2011. Datagram Transport Layer
Security (DTLS) for Stream Control Transmission Protocol (SCTP). RFC 6083.
Internet Engineering Task Force.

[27] D. Wing and A. Yourtchenko. 2012. Happy Eyeballs: Success with Dual-Stack
Hosts. RFC 6555. Internet Engineering Task Force.

[28] Y. Xu, Z. Wang, W. K. Leong, and B. Leong. 2014. An End-to-End Measurement
Study of Modern Cellular Data Networks. In Proc. Passive and Active Measurement
Conference (PAM). Springer, 34–45.

https://www.ietf.org/proceedings/96/slides/slides-96-quic-3.pdf
http://dast.nlanr.net/Projects

	Abstract
	1 Introduction
	2 Related Work
	3 copycat
	4 UDP for Internet Transport Evolution
	4.1 Measurement Setup
	4.2 UDP Blocking
	4.3 Throughput
	4.4 Initial Latency
	4.5 Lessons Learned

	5 Conclusion
	References

