
Manage resource-constrained IoT devices through
dynamically generated and deployed YANG models

Thomas Scheffler
Beuth-Hochschule für Technik

Luxemburger Str. 10
13353 Berlin, Germany

scheffler@beuth-hochschule.de

Olaf Bonneß
Deutsche Telekom AG

Winterfeldtstr. 21
10781 Berlin, Germany

olaf.bonness@telekom.de

ABSTRACT
This paper presents an experimental design/approach that
allows the standardized management protocol NETCONF
to handle dynamically changing networks found in the IoT
and Home-Networking domain.

Management of such networks is challenging, because they
usually grow out of spontaneous device assemblies, rather
than an engineering blueprint. Network membership may
be highly dynamic and the devices might only possess very
limited computation and communication budgets.

It is our goal to develop methods and strategies for au-
tomatic device discovery and configuration maintenance in
such networks. In our experiment we dynamically gener-
ate YANG data models and NETCONF RPCs from device
profiles written in JSON and map these to configuration
commands in the lightweight MQTT protocol.

CCS Concepts
•Networks → Network management;

Keywords
Constrained Devices; IoT; NETCONF; YANG, MQTT, Data
Modeling

1. INTRODUCTION
The NETCONF network configuration management pro-

tocol [4] is posed as the successor of the Simple Network
Management Protocol (SNMP). It currently has strong sup-
port from network equipment manufacturers, service provid-
ers and the IETF standardizations community. However,
outside this target group fewer people know about NET-
CONF and how it could be utilized for their configuration
management needs.

One target area that could benefit greatly from standard-
ized network and device management is the emerging do-
main of resource-constrained devices called the Internet of
Things (IoT). Device management in this domain is usually

Permission to make digital or hard copies of all or part of this work for personal or
classroom use is granted without fee provided that copies are not made or distributed
for profit or commercial advantage and that copies bear this notice and the full citation
on the first page. Copyrights for components of this work owned by others than the
author(s) must be honored. Abstracting with credit is permitted. To copy otherwise, or
republish, to post on servers or to redistribute to lists, requires prior specific permission
and/or a fee. Request permissions from permissions@acm.org.

ANRW ’17, July 15, 2017, Prague, Czech Republic
c© 2017 Copyright held by the owner/author(s). Publication rights licensed to ACM.

ISBN 978-1-4503-5108-9/17/07. . . $15.00

DOI: http://dx.doi.org/10.1145/3106328.3106331

done via dedicated Web-interfaces or corresponding smart-
phone apps. Larger installations might use cloud-based solu-
tions specific to a certain vendor or industry consortium1,2.

Most IoT installations consist of devices with very lim-
ited resources. There have been considerations to specify
a reduced NETCONF feature-set, called NETCONF Light
[8], to align the protocol requirements with the available
resources in the application domain. This particular effort
has been abandoned and work currently focuses on using the
Constrained Application Protocol (CoAP)[11].

This paper investigates a different approach how NET-
CONF management may be made compatible with current
IoT installations. Instead of running NETCONF on the
managed device itself, we implemented a NETCONF bridge,
that represents the IoT device domain in terms of device
management. In order to achieve this, the NETCONF bridge
is able to translate between IoT specific protocols and NET-
CONF. Our prototypical implementation uses the MQTT
protocol [7] as an example.

The NETCONF protocol uses the YANG language [2]
to model configuration and state data. The current us-
age model, defined by the RFC, assumes fairly static, pre-
established data models. The corresponding YANG schemas
may be discovered [9], but are usually already known by the
managed and the managing device prior to deployment.

In our proposed NETCONF bridge, no such prior knowl-
edge exists. The managing devices are unaware about func-
tionality that is added to their management domain by at-
taching new and previously unknown devices. It must there-
fore be possible to dynamically generate a YANG data model
for the managed IoT domain from data inherent to this do-
main. This data model may be adjusted as the network and
device composition changes over time. New devices may be
added, other devices leave the network or become unreach-
able.

Our paper presents a prototypical implementation for such
a bridging solution in order to answer the question what
components are necessary for such a dynamic use of the
NETCONF/YANG framework and to identify potential miss-
ing elements.

2. RELATED WORK
NETCONF assumes that a managed device plays the role

of a server and will be managed by a connecting client speak-
ing the protocol.

1https://www.bosch-iot-suite.com/remote-manager/
2https://developer.apple.com/homekit/

This architectural style follows the Internet End-to-End
paradigm, but means that a managed device needs to be
reachable from the client and has the necessary resources to
implement and execute the required protocol functionality.
Sehgal et al. [10] have shown that this assumption might
challenge certain intended IoT hardware platforms.

Effort is underway to lower the protocol requirements by
utilizing the Constrained Application Protocol (CoAP)[11]
to carry NETCONF protocol messages. There is ongoing
work in the IETF to define a compact encoding for protocol
data that is better suited than XML or JSON for use on
constrained devices [12], [13].

However, nothing has changed in the underlying architec-
tural model. NETCONF over CoAP still closely follows the
client/server communication pattern underlying the REST
architecture [5] of web services, where a client initiates the
connection and requests functionality from a server. This
is a proven communication pattern, that can scale very well
when the server has the necessary resources to satisfy all
client requests.

When the communication partner providing the service
has only limited resources, a communication style following
the publish/subscribe pattern might be a better fit. This
communication pattern inserts a third entity into the com-
munication path, which is acting as a proxy and decoupling
communication endpoints. Messages are only exchanged be-
tween the endpoints and this central element, called a bro-
ker, thus shielding the internal (IoT) devices from direct
Internet access. The broker may provide additional func-
tionality, such as caching. Expensive authentication and en-
cryption functions can be offloaded to the broker and the at-
tack surface, in case of misconfiguration or denial-of-service
attacks, is minimized.

One area, where publish/subscribe architectures shine is
information push. Pushing data, such as state changes or
notification events, to a number of subscribers requires ap-
plication state at the server-side. Otherwise client applica-
tions have to resort to polling, which can be very inefficient
if data changes infrequently and communication resources
are limited.

CoAP tries to solve the problem of repeated polling through
the introduction of a so called observer pattern [6]. A client
registers itself with the server to be notified about possible
changes at the server side. While this solves the problem
of repeated polling, the server now has to maintain a list
of observers. This burdens the constrained device with the
problem of managing this list and sequentially notifying all
observers about state changes, leading to potentially unde-
sirable traffic patterns at the server-side.

Our experimental design uses MQTT for realising the
publish/subscribe architecture, because it is an open proto-
col that has interesting properties suitable to our use case,
good tool support and is widely used as a messaging pro-
tocol. It runs well on constrained devices and a MQTT
client can send and receive messages for multiple topics over
a single TCP-connection, therefore requiring very limited
connection state.

3. MESSAGE QUEUE TELEMETRY TRANS-
PORT (MQTT)

Message Queuing Telemetry Transport (MQTT) is a light-
weight messaging protocol for the connection of embedded

publish "27°C"

publish "27°C"

publish "27°C"

subscribe

subscribe

MQTT
Broker

MQTT
Publisher

MQTT
Subscriber

Figure 1: MQTT architecture consisting of Pub-
lisher, Message Broker and Subscribers

devices that follows the publish/subscribe communication
pattern for distributed applications. The protocol was orig-
inally developed by IBM and is currently standardized by
Oasis [7]. It has been specifically designed to work in unreli-
able network scenarios, where data may be carried over low-
bandwidth, high-latency links. MQTT requires very little
resources from the participating devices. Implementations
exist for all important computing platforms, including 8-bit
microcontroller devices.

The communicating entities are called Publisher, Message
Broker and Subscriber (cf. Figure 1). Publisher are the
source of data. Message brokers queue, aggregate and dis-
tribute messages to subscribers. The message broker decou-
ples the publisher from the subscriber. This an especially
useful function in scenarios where the communicating enti-
ties have limited resources and become disconnected tem-
porarily from the network, such as sensor nodes in an IoT
use case.

Messages contain a so called topic in addition to the ac-
tual data. Topics are UTF-8 encoded strings that can be
used to build a naming hierarchy similar to the path hier-
archy in a file system. The hierarchy is build with the topic
level separator ‘/‘. The following example shows a topic
that identifies messages from/to the telephone in Room 2 of
House A:

House_A/Room_2/Phone

Each interested client that wants to receive messages for
a topic subscribes to this topic from the message broker.
It will then be notified by the broker when new messages
arrive. Subscriber do not need to poll for new data, making
it easy to scale the subscriber network without requiring
more resources or complex configuration at the publisher.
A subscriber can use wildcards to easily denote interest in
messages for multiple topics. MQTT supports single-level
and multi-level wildcards.

MQTT uses TCP for reliable, acknowledged message trans-
port and can optionally use TLS to provide confidential-
ity and strong authentication. The protocol itself is data-
agnostic. This means that the protocol assumes no structure
for the transmitted data and a data publisher can transmit
any form of digital data (ASCII, binary, etc.) that is under-
stood by the subscribers. The broker usually forwards the
message transparently and only processes the topic.

TCP guaranties reliable message transfer as long as a
connection exists. However, in use cases with constrained

MQTT
Broker

MQTT_Client/
NETCONF

Server

NETCONF
Client

7. MQTT
Control

2. MQTT
Profile

3. add_RPC(Profile),
generate_YANG(Profile)

6. MQTT
Control

Topic: yang/config

Topic: led/UUID#

1. MQTT
Profile

5.
<get>
<rpc>

NETCONF DomainMQTT Domain

4.
<get_schema>

Figure 2: System architecture of the NETCONF/MQTT bridge.

devices, network connectivity may be unreliable. MQTT
therefore provides a message acknowledgement mechanism
at application level, called QoS that works in conjunction
with a session abstraction that can span multiple TCP con-
nections.

4. IMPLEMENTATION
Our prototypical NETCONF/MQTT bridge implementa-

tion makes dynamic IoT networks manageable via the NET-
CONF protocol. Such a solution requires three distinct func-
tional components, a discovery mechanism, that allows the
bridge to learn about available devices and their manage-
ment capabilities. Secondly we need a translation service
that converts these capabilities into a valid YANG model.
Finally, we also need a component that receives configu-
ration commands via NETCONF and turns them into the
required domain-specific messages so that the devices can
be managed using standard mechanisms.

Ideally there should exist a common protocol or language
that let the managed devices express their capabilities in a
domain independent manner and that is translatable to a
YANG model understood by NETCONF management so-
lutions. Because such a common language is currently not
available we designed a simple JSON message format as a
minimal working example.

The NETCONF/MQTT bridge is implemented using sev-
eral Python libraries. The bridge acts as an MQTT client
towards the IoT domain, that is both publishing and sub-
scribing to certain topics. The MQTT functionality is pro-
vided by the paho-mqtt library3. The netconf server li-
brary4 provides functionality for the NETCONF server part
of the NETCONF/MQTT bridge. YANG models are dy-
namically generated using the pyang library5.

The functionality of the NETCONF client has been tested
using the ncclient Python library6, whereas the MQTT
broker uses mosquitto7.

3http://www.eclipse.org/paho/clients/python/docs/
4https://github.com/choppsv1/netconf
5https://github.com/mbj4668/pyang
6https://github.com/ncclient/ncclient
7https://mosquitto.org

4.1 Architecture
Our network architecture is shown in Figure 2 and consists

of two separate network management domains. In each do-
main network and device management tasks are carried out
using the respective protocol. This is a purely conceptional
separation chosen to illustrate the use case.

However, enforcing a strict separation between the do-
mains may have some additional benefits that we would like
to mention briefly. The NETCONF/MQTT bridge could
serve as a demarcation point that limits visibility and reach-
ability of the constrained network from public networks.
This configuration makes it easy to implement application
level checks and security methods at the bridging point.

A defined service entry point also makes it easier to im-
plement rate limiting and user authentication. It also lim-
its the exposure to Denial-of-Service attacks against con-
strained network devices, that may otherwise be trivial to
carry out. It also aligns well with the provisioning of man-
aged services, where service providers deploy and configure
residential and customer gateways.

4.2 MQTT topic levels
MQTT can, amongst other things, be used for configu-

ration and device management tasks. However, the pro-
tocol makes no dedicated provisions for such use. Topics
and message formats have to be coordinated between all
communicating entities in the domain, making multi-vendor
support challenging. Topics have no directionality, which
means, that the protocol does not distinguish between out-
going or incoming messages. All MQTT client entities are
free to register as a subscriber or publisher of data and can
do so simultaneously for different topics. In order to restrict
access to configuration data to trusted entities, additional
authorization measures would have to be implemented at
the MQTT broker.

For the purpose of the experiment, we defined and used
the following topics for device management within the MQTT
domain:

yang/config

command/led/UUID#

The topic yang/config will be used to send device con-
figuration data to the NETCONF/MQTT bridge. Whereas

{
"device": {
"description":"MQTT-Device identified by UUID",
"uuid": {
"type":"string",
"value":"F97DF79-8A12-4F4F-8F69-6B8F3C2E78DD"

},
"device-category": {
"description":"Identifies the device category",
"type":"string",
"value":"LED-LAMP"

}
},
"rpc": {
"set_color_green": {
"description":"Set the LED-bulb color to green",
"mqtt-command":"GREEN",
"input": {
"uuid": {
"description":"Sends request to UUID",
"type":"string"

}
}

}
}

}

Listing 1: JSON encoded configuration and state data.

the topic command/led/UUID# is used as a command channel
from the bridge to the corresponding device identified by a
specific UUID.

4.3 Device Configuration Discovery
The NETCONF/MQTT bridge needs to discover the func-

tionality and configuration of attached IoT devices. We de-
vised a simple mechanism where the bridge receives con-
figuration data about attached devices via a specific MQTT
topic. The bridge subscribes to yang/config where it listens
for incoming configuration messages.

Configuration data is currently modelled in JSON. The
format is chosen to closely match the YANG model that
will be generated from it. Listing 1 and 2 show an example
of such a configuration message and the YANG model that
is derived from it. Besides device configuration functions,
the JSON message also contains data items that represent
operational state for individual devices, such as its UUID
value. This data is later used by the bridge to accurately
announce the device state within NETCONF <get/> RPC
calls. Listing 3 and 4 show such a message exchange between
the NETCONF client und the bridge. The bridge announces
a list of two active devices of a certain type, distinguished
by their UUID value. This announcement is generated from
the JSON messages received via MQTT.

NETCONF distinguishes clearly between operational and
configurational state of a device. We currently only model
the operational state, since managing devices via propri-
etary RPC function calls reflects the current state of the IoT
domain management. Therefore the bridge has no device-
independent data-store that could be managed. However, if
we assume that a common IoT device management standard
will emerge in the future, we could very well also manage
configurational state at the NETCONF bridge.

4.4 NETCONF operation
A NETCONF client needs to have complete knowledge

of device functions and manageable parameters of the man-

<?xml version="1.0" encoding="UTF-8"?>
<rpc-reply xmlns="urn:ietf:params:xml:ns:netconf:

base:1.0"↪→

message-id="2">
<data xmlns="urn:ietf:params:xml:ns:yang:

ietf-netconf-monitoring">↪→

<![CDATA[module mqtt-led {
namespace "http://ipv6lab.beuth-hochschule.de/led";
prefix led;

container device {
description "MQTT-Device identified by UUID";
list device-id {
key "uuid";
leaf uuid {
type string;

}
}
leaf device-category {
description "Identifies the device category";
type string;

}
}
rpc set_color_green {
description "Set the LED-bulb Color to green";
input {
leaf uuid {
description "Sends request to UUID";
type string;

}
}

}
}
]]> </data>
</rpc-reply>

Listing 2: Dynamically generated YANG schema.

aged device. The standard defines the use of static YANG
data models, which may have different, clearly referenced
revisions. YANG schemas may be provided directly by the
NETCONF server and can be discovered from the client via
a <get-schema/> RPC described in [9]. However, most use
cases assume that the data models are exchanged outside an
active NETCONF session.

This paper deviates from the standard and defines a new
type of YANG model. The important feature of this model
is that is dynamic. It is generated to represent a snapshot
of the underlying IoT device state. While it aims to be a
true representation of the current network, it is in itself not
reproducible in time and therefore not referenceable through
the existing versioning mechanism.

We use a dynamically generated YANG model as a vir-
tual repository, which represents capabilities of the managed
devices. It only exists on the bridge and needs to be dis-
coverable by the NETCONF clients. For this purpose, the
generated YANG model can be retrieved directly from the
NETCONF server represented by the bridge.

The dynamic YANG model has no meaning outside the
local setting and will be acquired by a NETCONF client us-
ing the <get-schema/> RPC. In order to inform a connected
NETCONF client that dynamic changes have happened to
the YANG model, we propose the use of Event Notifications
defined in [3] and [1].

Our prototypical implementation of a NETCONF/MQTT
bridge uses JSON encoded device configurations, received
via MQTT (cf. Step 1 and 2 in Figure 2). It generates a
corresponding YANG module for each device category. List-

<rpc message-id="1"
xmlns="urn:ietf:params:xml:ns:netconf:base:1.0">↪→

<get/>
</rpc>

Listing 3: NETCONF <get/> request.

ing 2 shows the generated YANG model, which is derived
from the device configuration (Step 3). The NETCONF
client now has the ability to discover this model from the
NETCONF/MQTT bridge (Step 4). In the next step the
NETCONF client uses this YANG module to manage de-
vices in the IoT domain via standard NETCONF methods
(Steps 5, 6 and 7).

We chose to model each device category as a separate
YANG module. This makes it easier to group device state
and management functions together and reduces the rate of
change, because we expect individual device functions to be
quite stable over time.

Since we keep no configurational state a the NETCON-
F/MQTT bridge, we represent device functions through cus-
tom RPCs within the device model. Such RPCs map to a
set of actions or commands on a dedicated device. A de-
cision had to be made at this point on how to model the
command. We could either provide a generic function, such
as set_color() that needs to be parameterized with the cor-
rect color value or provide a specific function particular to
the color supported by device, such as set_color_green().
We chose the latter approach since it also makes the device
more discoverable. The decision may ultimately depend on
the number of offered choices. If the number of choices is
high, it makes more sense to provide a parameterized func-
tion.

This type of decision is typical for any interface design and
is usually solved by an interface design guideline. Listing 5
shows an exemplary RPC targeted at one particular device
in the IoT network. The UUID input parameter is used by
the bridge to specify the MQTT topic (or address) for the
message generated by the bridge (cf. Section 4.2).

The mqtt-command entry in the JSON model (cf. List-
ing 1) provides the mapping between the NETCONF RPC
and the corresponding MQTT message content. The MQTT
message content is later interpreted as a command value by
the controlled device.

Throughout this paper we assume a simple trust relation-
ship between the managed devices, the NETCONF/MQTT
bridge and the NETCONF client. This may not be realistic
for practical installations, but a deeper discussion is out of
scope for this paper.

5. DISCUSSION
The current development towards an Internet of connected

devices is handicapped by the lack of a common configura-
tion and management approach. This creates disjoint sets of
devices that lack true interoperability, thereby missing new
service opportunities, such as automated deployment and
managed IoT-services for devices manufactured by different
vendor groups.

This paper examines an exemplary solution for IoT de-
vices management based on standards. We map our pro-
prietary, MQTT-based device management to dynamically
generated NETCONF RPCs that may be discovered via a
corresponding YANG model. In our approach, IoT devices

<?xml version="1.0" encoding="UTF-8"?>
<rpc-reply

xmlns="urn:ietf:params:xml:ns:netconf:base:1.0"↪→

message-id="1">
<data>
<device
xmlns="http://ipv6lab.beuth-hochschule.de/led">↪→

<device-id>
<uuid>F97DF79-8A12-4F4F-8F69-6B8F3C2E78DD</uuid>
</device-id>
<device-id>
<uuid>F97DF79-8A12-4F4F-8F69-6B8F3C2E88FF</uuid>
</device-id>
<device-category>LED-LAMP</device-category>

</device>
</data>

</rpc-reply>

Listing 4: Generated NETCONF <get/> response.

<?xml version="1.0" encoding="UTF-8"?>
<rpc xmlns="urn:ietf:params:xml:ns:netconf:base:1.0"

message-id="2">↪→

<set_color_green
xmlns="http://ipv6lab.beuth-hochschule.de/led">↪→

<uuid>F97DF79-8A12-4F4F-8F69-6B8F3C2E78DD</uuid>
</set_color_green>

</rpc>

Listing 5: RPC from the NETCONF client containing
UUID.

post their configuration data via a previously agreed MQTT
channel and allow a NETCONF/MQTT bridge to discover,
learn and propagate their capabilities. Instead of creating
yet another network management protocol we can show that
it is possible to reuse existing approaches in order to reduce
parallel development and avoid marginalisation.

5.1 Configuration
One very important building block for a truly standard-

ized way for device configuration, is the agreement on a data
format that describes IoT resources, entities and services,
that is translateable into YANG models. Developing device
ontologies is an ongoing research and standardization item
for organisations such as oneM2M8 and W3C9, however no
final consensus has been reached yet and active deployment
seems to be marginal. We are currently investigating if it
will be possible to transform our custom JSON data model
into a oneM2M ontology, thus adding another piece of stan-
dardisation to the scenario.

Another important aspect, that we could only touch briefly
is IoT device lifetime management. This includes discovery
of the current status of the device, its network association
and other parameters. We currently implement a very lim-
ited life-time model, where a device may post its recent con-
figuration as part of an on-boarding procedure as soon as it
detects a network connection or reset. Large pieces for a full
data-model based IoT device lifecycle management are still
missing and should be a topic for future investigations. For
example, we have not yet implemented a mechanism that
makes sure that IoT device data represents the actual sta-
tus of the device. Configuration data may be out of sync
with the deployed device.

8http://www.onem2m.org
9http://www.w3.org/Submission/2015/SUBM-iot-lite-
20151126/

5.2 MQTT usage
MQTT is easy to work with and is a protocol with in-

teresting properties. It is, however, focussing on message
transport and provides little coordination at the topic level
or application layer abstractions for data modelling. It is
currently the responsibility of each application developer to
have an intrinsic knowledge of the final deployment and the
currently used topic separation may clash in larger instal-
lations. Hence MQTT should be understood only as pure
transport protocol, implementing a publish/subscribe archi-
tecture. Additional functionalities as given by supporting
e.g. a NETCONF/YANG protocol suite are currently left
to the application developer.

5.3 Ephemeral YANG models
Throughout this paper we are using YANG models outside

the current specification. RFC 6020 defines YANG mod-
els to be static and referenceable. We generate ephemeral
models that may be short lived and change very frequently.
The generated models capture the current capabilities of the
connected devices and have no defined meaning outside the
context of the currently managed IoT domain.

Apart from this change in usage of YANG models, no
other changes have been made to the underlying protocols.
If we assume that a universal ontology for IoT emerges in the
future and that it would be fully translatable into YANG,
our approach might no longer be needed and device models
could again be statically described. However, in the mean-
time we see our approach as a way towards a workable IoT
device management based on standard mechanisms and a
viable way to integrate legacy device installations.

5.4 Influence on Protocol Design
It has been our experience that IoT device management is

very fragmented and most network management approaches
tend to be device oriented. The Netconf standardization ef-
fort is a step in the right direction as it uses a discoverable
data model that can be analyzed and processed. However,
data and device aggregation is usually done at the Net-
conf Client in post-processing, rather than at the Netconf
Server. This potentially generates traffic and processing re-
quirements that are difficult to meet in an IoT setting based
on restricted devices. We believe that it would be bene-
ficial to treat YANG models not exclusively as normative
references but to support derived models that may be pre-
processed or dynamically generated at the Netconf Server.

The current approach for YANG data modelling is still
difficult to automatize and keeps humans in the loop. As
YANG models try to bridge the gap between device ontolo-
gies and configuration repositories, we see value in develop-
ing them in a direction that allow rich device descriptions to
make automatic device discovery and configuration possible.

6. CONCLUSIONS
It has been our aim to extend standards-based configu-

ration management to IoT installations. We implemented
the concepts and ideas discussed in this paper in a working
prototype and where able to validate the operational value
of such an approach. The corresponding code can be found
on Github10.

10https://github.com/tscheffl/netconf-mqtt-bridge

The format and mechanism for configuring the IoT do-
main is currently heavily inspired by the properties of the
YANG data modelling language and the available NET-
CONF mechanisms. We are further investigating opportu-
nities and consequences of an alternative approach for the
generation of device descriptions based on ontologies.

7. ACKNOWLEDGMENTS
We would like to thank Jürgen Schönwälder of Jacobs

University in Bremen for his valuable insight into the cur-
rent and past activities and decisions of the relevant IETF
working groups.

8. REFERENCES
[1] A. Bierman. Network Configuration Protocol

(NETCONF) Base Notifications. RFC 6470, Internet
Engineering Task Force, Feb. 2012.

[2] M. Bjorklund. YANG - A Data Modeling Language
for the Network Configuration Protocol (NETCONF).
RFC 6020, Internet Engineering Task Force, Oct.
2010.

[3] S. Chisholm and H. Trevino. NETCONF Event
Notifications. RFC 5277, Internet Engineering Task
Force, July 2008.

[4] R. Enns, M. Bjorklund, J. Schoenwaelder, and
A. Bierman. Network Configuration Protocol
(NETCONF). RFC 6241, Internet Engineering Task
Force, June 2011.

[5] R. T. Fielding. Architectural Styles and the Design of
Network-based Software Architectures. PhD thesis,
University of California, Irvine, 2000.

[6] K. Hartke. Observing Resources in the Constrained
Application Protocol (CoAP). RFC 7641, Internet
Engineering Task Force, Sept. 2015.

[7] Oasis Standard - MQTT Version 3.1.1.
http://docs.oasis-open.org/mqtt/mqtt/v3.1.1/os/
mqtt-v3.1.1-os.pdf, Oct. 2014.

[8] V. Perelman, J. Schoenwaelder, M. Ersue, and
K. Watsen. Network Configuration Protocol Light
(NETCONF Light). Internet-draft (expired), Internet
Engineering Task Force, Jan. 2012.

[9] M. Scott and M. Bjorklund. YANG Module for
NETCONF Monitoring. RFC 6022, Internet
Engineering Task Force, Oct. 2010.

[10] A. Sehgal, V. Perelman, S. Kuryla, and
J. Schönwälder. Management of resource constrained
devices in the Internet of Things. IEEE
Communications Magazine, 50(12):144 –149, Dec.
2012.

[11] Z. Shelby, K. Hartke, and C. Bormann. Constrained
Application Protocol (CoAP). RFC 7252, Internet
Engineering Task Force, June 2014.

[12] P. van der Stok, A. Bierman, M. Veillette, and
A. Pelov. CoAP Management Interface. Internet-draft,
Internet Engineering Task Force, Jan. 2017.

[13] M. Veillette, A. Pelov, A. Somaraju, R. Turner, and
A. Minaburo. CBOR Encoding of Data Modeled with
YANG. Internet-draft, Internet Engineering Task
Force, Feb. 2017.

