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Challenges

Unstructured Heterogeneous
topology capacity
Unexpected Misprediction
failures & Traffic Bursts
Device Update
limitations overheads
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Path Selection Challenges

- Selecting a good set of paths is tricky!
- Route the demands (ideally, with competitive latency)
- React to changes in demands (diurnal changes, traffic bursts, etc.)
- Be robust under mis-prediction of demands
- Have sufficient extra capacity to route demands in presence of failures

- and more ...



Approacn

A static set of cleverly-constructed paths can
provide near-optimal performance and robustness!

Desired path properties:
- Low stretch for minimizing latency

- High diversity for ensuring robustness
- Capacity aware

- Good load balancing for performance { . Globally optimized
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- Traditional approaches to routing
pased on shortest paths (e.q,,
CCMP, KSP) are generally not
capacity aware
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Oblivious Routing
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Oblivious
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SMORE: Semi-Oblivious Routing

Oblivious Routing computes a set of paths g
which are low-stretch, robust and have
good load balancing properties

LP Optimizer balances load by dynamically Rate
adjusting splitting ratios used to map

incoming traffic flows to paths

Semi-Oblivious Traffic Engineering: The Road Not Taken [NSDI 18]




Semi-Oplivious Routing in Practice?

- ¥ Previous work established a worst-case competitive
ratio that is not much better than oblivious routing: Q(log(n)/log (log(n)))

- A But the real-world does not typically exhibit worst-case scenarios

- A Implicit correlation between demands and link capacities

Question: How well does semi-oblivious routing perform in practice?
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Robustness

Max. Link Utilization ~———— Failure Drop
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Operational Constraints - Path Budget
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Large Scale Simulations

- Conducted larger set of simulations on Internet Topology Zoo

- 30 topologies from ISPs and content providers

- Multiple traffic matrices (gravity model), failure models and operational
conaitions




Do these results generalize?
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Takeaways

Path selection plays an outsized role in the performance of TE systems

. Semi-oblivious TE meets the competing objectives of performance and
robustness in modern networks

- Oblivious routing for path selection + Dynamic load-balancing
- Ongoing and future-work:
- Apply to other networks (e.g. non-Clos DC topologies)

- SR-based implementations and deployments



Thank You!

SMORE: Oblivious routing + Dynamic rate adaptation
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