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ABSTRACT
This paper proposes and evaluates a new approach, based
on Software Defined Networking (SDN), to secure the
IPv6 Neighbor Discovery Protocol (NDP) message ex-
change and make the Stateless Address Autoconfigura-
tion safer. We created an SDN application on the Ryu
SDN framework which functions as an intelligent NDP-
Proxy. The SDN application inspects all NDP messages
in the data path of the access switch. Once the applica-
tion has accumulated data about the respective network
segment, it performs sanity checking and filtering. We
used several relevant attacks from the THC IPv6 toolkit
to assert resiliency against attacks on the Neighbor Dis-
covery Protocol. Load tests showed that the overhead for
the NDP packet inspection is not neglectable, but once
the relevant flow-rules have been installed, subsequent
packets are forwarded on the fast-path of the switch and
network performance is only minimally affected.

1 INTRODUCTION
One of the differentiating features of IPv6 is the address
resolution process, which changed significantly between
IPv4 and IPv6. IPv6 hosts support Stateless Address
Autoconfiguration (SLAAC) [19] and use it to configure
their IP stack. MAC addresses are resolved using the
Neighbor Discovery Protocol (NDP) [14] instead of the
Address Resolution Protocol (ARP) [17] used by IPv4.

NDP has been diagnosed as a security risk for switched
Ethernet networks [2, 3], because routers and hosts im-
plicitly trust all other nodes on the local network. A
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number of easily executable attacks, such as redirection,
man-in-the-middle, resource exhaustion, and starvation
have been identified and are easily exploitable. Several
approaches have been examined to make the protocols
safer. Deployments of IPsec [12] or SEcure Neighbor
Discovery (SEND) [4] suffer from complexity, bootstrap
problems, resource hunger and a lack of deployment on
relevant platforms [1, 3, 9, 15]. Other methods call for
the implementation of monitoring and filtering capabili-
ties on all susceptible network links [6, 13] and require
support from the Link-Layer (L2) switching hardware.

1.1 Approach
Threats against the Neighbor Discovery Protocol arise
because attackers on the local network can monitor pro-
tocol traffic. The protocol requires no authentication and
protocol messages can be spoofed or modified using tools
such as Scapy1 or the THC-IPV6-ATTACK-TOOLKIT2.

This paper explores the possibilities of mitigating
threats against NDP in switched Ethernet networks
by creating a stateful binding between IPv6-Addresses,
MAC-Addresses and physical switch ports on the local
network switch. This binding is temporary and behaves
similarly to a L2 neighbor cache entry [14]. The binding
is used to selectively forward NDP-messages and detect
malicious behaviour originating from specific ports (such
as MAC-address spoofing and others). The approach
does not require any changes to NDP or host implemen-
tations and should be transparent for network clients.

SDN offers the ability to implement new functions in
the data-path of switched networks not limited by the
Link-Layer processing capabilities of the switching hard-
ware. Network functions that have traditionally been
implemented by router or switch manufacturers can now
be developed and adapted independently and at a much
faster pace than previously possible, providing true Net-
work Function Virtualisation (NFV) [8].

We are aiming to secure the neighbor discovery pro-
cess by deploying an access switch, which intercepts

1https://scapy.net
2https://github.com/vanhauser-thc/thc-ipv6
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Table 1: Flow table

src_ip dst_ip ... priority counters instructions timeouts cookie flags

* 1.1.1.1 ... 1 0 drop 20 1 ...
2.2.2.2 * ... 2 0 dec_ttl 20 2 ...

...
...

...
...

...
...

...
...

...
* * ... 0 6 controller 0 0 ...

all ICMPv6 NDP messages and presents them to the
SDN-controller for inspection. The controller calls a
NDP-proxy application that either generates necessary
protocol messages itself or verifies received messages
prior to forwarding. The goal is to assure First Hop secu-
rity for IPv6 clients by having the NDP-proxy act as the
source and sink of all NDP messages on the local network
and thus suppress potential attack vectors. Furthermore,
the controller is the only instance allowed to emit IPv6
Router Advertisements, blocking all such messages from
other sources. In order to distinguish legitimate hosts
from potential attackers, the controller maintains its own
cache of connected hosts.

1.2 OpenFlow
OpenFlow is the communication protocol between the
control and forwarding plane of an SDN architecture. It
enables a controller application to alter the configura-
tion of network hardware, based on decisions reached by
analyzing incoming traffic and other criteria. OpenFlow
enabled switches maintain a flow table as well as an API
allowing the insertion and deletion of flow rules. Incom-
ing packets are matched to one or several flow rules by
comparing packet data with match fields. Those fields
can contain actual data or be wildcarded. Subsequently,
actions stored in the instructions field of the matching
rule with the highest priority are executed, such as for-
warding the packet to a certain port or to the controller
for further inspection. Flow rules furthermore contain a
cookie, which is a numerical field used for identification
purposes and a timeout value, allowing for automatic
removal of a rule after a certain amount of time has
elapsed. Each rule can be associated with a meter, which
can limit traffic forwarded by that rule. Table 1 shows
a schematic representation of such a table, for a more
detailed insight, please refer to the specification [16].

1.3 RYU
Ryu3 is an open-source, component-based SDN frame-
work written in Python. It enables developers to write
controller applications, called Ryu apps. Those can be
3https://osrg.github.io/ryu/

used to process packets forwarded by an SDN-enabled
switch and trigger actions, such as altering the behavior
of the switch or sending alerts to a monitoring system.
Communication with the switch is facilitated via one of
several protocols, with OpenFlow being the most widely
supported one [11]. While Ryu is not the fastest available
SDN framework [21], it has full OpenFlow support and
a very active developer community.

1.4 IPv6 Address Configuration
IPv6 hosts support the stateless autoconfiguration of
addresses (SLAAC) specified in [19]. A host willing to
join a particular network generates itself a link-local
address for the given interface by combining the link-
local prefix fe80::/10 with an identifier, usually the
MAC address of the interface.

The resulting address is considered tentative until Du-
plicate Address Detection (DAD) has been performed.
DAD verifies the uniqueness of the address in a network
segment and is conducted by sending out an ICMPv6
Neighbor Solicitation (NS) message with the Network-
Layer source set to the unspecified address :: and the
target field set to the tentative address. Should a Neigh-
bor Advertisement (NA) for the tentative address be
received, another host on the network segment signals
that this address is already in use and the joining host
can not use this address. If no such NA is received, the
address is considered to be unique on the segment and
can be used, permitting local communication on the
given network segment.

The host also needs a global IPv6 address to be fully
reachable. Global address prefix information is usually
distributed via a Router Advertisement (RA) message.
RAs are emitted by routers periodically and can be
requested via Router Solicitation (RS) messages for faster
configuration.

If a host needs the L2 address of another host on
the same segment, it sends a NS to the destination’s
Solicited Node Multicast address, with the target field
set to the link-local IP of the destination host. If a host
with the target IP address is present, it responds with
a NA to the origin of the request, providing it with its
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Figure 1: Attacking a hosts Neighbor Cache via IPv6 Neighbor Spoofing.

L2 address. Address information is stored in a host’s
neighbor cache [19].
All these procedures are vulnerable to attacks, because
any host on the network can craft and send the neces-
sary protocol messages and hosts accept the contained
information without being able to assess the authenticity
of the messages.

Attacks can be mounted by sending spoofed NS mes-
sages to a target host which leads to service disruption
and/or man-in-the-middle attacks. The left network in
Figure 1 depicts a situation, where an attacker (Host C)
may be able to spoof the identity of a victim (Host B).
Tools such as parasite6 from the THC-Toolkit allow
for the easy execution of such attacks with only minimal
knowledge about the process. Another threat are bogus
Router Advertisements, that can disrupt service or allow
an attacker to compromise the network [5].

2 NDP PROXY
This section provides a brief introduction to the concept
and architecture of our Ryu-app.

The access-switch in any network is in a unique po-
sition to monitor and control network access by con-
nected hosts. Traditional Ethernet switches, with their
hardware-based data plane, focused on fast L2 processing,
can fulfill this task only imperfectly. Software-defined
networking allows for a flexible split between data traffic
processed by the switch hardware and control traffic
presented to the controller for further inspection, not
limited by the hardware and software capabilities of the
switch.

Our main component, the NDP proxy app, connects
to the switch and sets up flow rules to intercept all
ICMPv6 / IPv6 messages. It then processes the packets
matched by said rules. Our main interest lies in the

NS/NA messages that allow the app to learn the state
of the network and stop malicious activities before they
reach other hosts.

Incoming packets are processed sequentially by Ryu
and categorized according to their icmp type [7]. We
usually want to switch ordinary IPv6 traffic directly via
the switch. However, before a dedicated flow-rule has
been established (or after it may have been expired)
other IPv6 traffic may reach the controller. We make use
of these packets to track whether a host is still active in
the network.

Non-IPv6 packets are used to learn their origin port
and Media Access Control (MAC) address. Afterwards
they are forwarded to the switch and a dedicated flow-
rule may be installed. This is the standard behavior of a
MAC-learning switch and permits regular IPv4 operation
on the network. ICMPv6 / IPv6 traffic originating from a
host already learned is still caught, as the corresponding
flow rules for IPv6 use a higher priority than the MAC-
learning rules.

Certain messages, such as redirect [14] are simply ig-
nored in our setup, since they are significant only in
multi-router scenarios [7]. A configuration file allows to
set certain parameters, such as the prefix and DNS server
advertised within the Router Advertisements, timeout
values and others.

2.1 Router Advertisement Guard
Our app is the only instance allowed to emit Router
Advertisement (RA) messages into this network segment.
RAs emitted from other sources are dropped and not for-
warded through the subnet. Router Solicitation messages
are answered by the app itself, providing the request-
ing host with information preset in the configuration
file. This behavior constitutes a Router Advertisement
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Figure 2: The app verifies NS and NA messages by checking them against the cache.

Guard [13], which further secures network operation in
local IPv6 subnets.

2.2 Generating a Neighbor Cache
Securing SLAAC and NDP is challenging because it is
difficult to distinguish legitimate NDP messages from
spoofed ones, aimed at compromising the communication
between hosts. However, if we can establish a trustworthy
mapping between a hosts MAC-address, IP-addresses
and physical port in the access network switch, we will be
able to assess the legitimacy of those messages without
limiting the auto-configuration process.

As explained in Section 1.4, each host is required
to verify the uniqueness of configured addresses using
DAD, once it becomes active on a network segment.4
We decided to use the DAD messages to build a cache of
trustworthy neighbors within the NDP proxy app, where
we bind an IP address to a specific L2 address until the
cache entry is deleted. Subsequent changes to the L2
address associated with an IP address will be blocked5

and reported (see Figure 1, right network).
DAD messages are not forwarded through the subnet.

This increases security, because an attacker does no
longer see other hosts entering the network. However, it
shifts the responsibility for detecting address collisions
from the hosts themselves to the app. When a DAD
message is received, the app checks the cache for an
existing entry with the address in question. In case of a

4The standard states this as a ’should’ and allows hosts to disable
DAD. However, this is not recommended and in our case would
exclude the host from communicating on the network.
5This may break certain failover-scenarios for servers where multi-
ple NICs share one IP-address, which is not within the use-case of
our app.

collision, a NA is sent to the requesting host, notifying
it that the address is already taken. Otherwise a new
cache entry is added. This approach is as reliable as the
original behavior, even if two hosts perform the check at
the same time. Since Ryu processes packets sequentially,
one request will always be the first to get permission to
use the address.

2.3 Using the Neighbor Cache to
control secure operation

Figure 2 shows the normal operation for a network where
DAD has already been performed for all hosts. Neigh-
bor Solicitation messages are send by hosts to resolve
unknown L2 addresses for network targets. NS messages
are only forwarded in the network, if a cache entry for
the given IP address exists (Steps 1, 2, 3). The app could
theoretically answer this request itself (with information
from the Neighbor Cache), but we decided to forward
this message in order to verify the reachability of the
host (Step 4).

If a corresponding Neighbor Advertisement is received,
the contents of its fields are checked against the cache
entry. Should Network- and Link-Layer addresses match,
the NA is deemed safe to be forwarded and communica-
tion between the two hosts is permitted via a temporary
flow rule (Step 5 green, 6). If the data does not match,
the packet is discarded (Step 5 red). This prevents the
insertion of a false L2 address into the neighbor cache
of hosts, but also provides protection against flooding
the Neighbor Cache of the app with random NAs. Other
IPv6 traffic is used in a similar way - the first packet
is forwarded to the controller and used to record activ-
ity by the sending host. If IP and L2 address match,
a new temporary flow rule is inserted and the packet
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is forwarded to the destination, otherwise the traffic is
dropped.

Cache entries time out when no network activity is
detected from a host. This preserves the transparent
switching property of Ethernet networks.

3 IMPLEMENTATION
This section contains an overview of the app as well as
a non-exhaustive description of implementation details
which may be of particular interest.

3.1 Overview
The app consists of several modules, which all inherit
from RyuApp. Separating functionality of the app results
from the need to let the respective parts run concur-
rently.
ndp_proxy.py is the heart of the app and manages the
connection with the switch, handling of incoming traffic,
and processing events sent by OpenFlow.
cache_manager.py iterates over the neighbor cache, check-
ing and potentially deleting entries. ra_sender.py emits
Router Advertisement messages at configurable intervals
and flood_checker.py monitors switch ports for flood-
ing. ndp_proxy_controller.py exposes a REST API
that gives access to statistics and several runtime config-
uration settings.
The app is started by running ndp_proxy_runner.py.

3.2 Packet matching
On startup, the app inserts flow rules with a higher
priority than regular rules into the flow table of the
switch, with the aim to catch all ICMPv6 traffic. In
each rule, the cookie field (see Section 1.2) is set to the
icmp_type of the respective message type it is supposed
to match. The switch sends the cookie information of
the matching rule with each Packet-In message to the
controller. The cookie can thus be used to conveniently
categorize the messages, without having to decode the
packet first.

Another rule with a medium priority is added to catch
all remaining IPv6 traffic. It acts as a fall back to forward
IPv6 packets to the controller, should no other flow
rule explicitly allow communication between two hosts.
If the meter_flag in config.py is set, an OpenFlow
meter [16] is associated with each rule on switches that
support this feature. This provides a limited form of DoS
protection, as it shields the controller against attacks,
where a host floods it with more ICMPv6 traffic than it
can handle.

3.3 Additional features
The app provides some additional features that were
deemed useful during development, testing and opera-
tional troubleshooting.

A counter for cache misses as well as statistics re-
garding received ICMPv6 messages can be retrieved via
a REST call. The app generates warnings for address
collisions, cache misses and NDP messages with content
not matching the neighbor cache. This provides valuable
insight into the operation of the network segment and
allows to easily identify misconfigured or malicious hosts.

Traffic going through the app can be logged to a pcap-
file. The logging can be toggled via REST and provides
two modes: One for all ICMPv6 traffic going through
the controller and one for packets generated by the app
itself.

The app also keeps track of the rate at which packets
are forwarded from the switch to the controller. Together
with the support for OpenFlow meters this provides a
basic anti-flood mechanism. If the Packet-In rate for a
certain switch port exceeds a configurable threshold, a
warning is generated. This message contains the exact
period during which abnormal traffic conditions were
observed. Future versions of the app could also provide
an option to (temporarily) disable the switch-port to
stop flooding-attacks at the source.

4 EVALUATION
A number of tests have been conducted to assess the
functionality of the app as well as its performance.

4.1 Functional Tests
Basic IPv6 functionality has been verified in a virtual
set-up using Mininet6 running Open vSwitch 2.10.1 as
well as in a lab setting using a mix of dedicated Windows
and Linux hosts using an Edgecore AS4610-30T switch
running PICOS 2.10.2.

A second test used the THC toolkit to simulate attacks
on a virtual network topology created with Mininet.
The parasite6 tool spoofs NA and NS messages in
order to establish a man-in-the middle position for the
attacking host. Spoofing attempts by this program could
be successfully prevented by the proxy app. Unlike in
tests performed without the controller, the integrity of
neighbor caches on all hosts is preserved. flood_router6
and flood_advertise6 were used to simulate flooding
with ICMPv6 messages. The metering feature proved to
be successful in mitigating such attacks, provided it kept
the rate of arriving packets below the threshold of what
Ryu itself can handle on the given hardware. We also
6http://mininet.org
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Table 2: Average first ping times for the NDP
proxy measured over 25 runs

Network Size 2 5 10 25 50 100
Latency in ms 12.39 12.98 16.32 21.63 34.62 58.21

tested fake_router6, a program announcing itself as the
router with highest priority on the network. The attack
was rendered useless since its Router Advertisements are
caught and dropped.

4.2 Performance
We also evaluated the impact of the proxy app on network
performance. We chose to compare ping times between
ndp_proxy and the MAC-learning switch application
simple_switch13 included in Ryu. Only the switching
delay for the first ICMPv6 packet per host is of interest.
It is the only packet that is forwarded via the controller
and triggers the installation of a flow-rule. Subsequent
packets are directly forwarded via the switch to the
destination host, until the corresponding flow rule times
out.

We created networks of different size. For each topol-
ogy size, the setup has been started 25 times on a laptop
computer equipped with a Intel i7-5500U CPU and 8
GB of RAM running Ubuntu 17.10. After starting the
app and creating the network in Mininet, we waited 5
seconds for the address autoconfiguration to finish. After-
wards the command ping6 -c1 fe80::200:ff:fe00:2
-I h1-eth0 was issued and the output parsed.
Table 2 lists the average timings for the ndp_proxy app.
For simple_switch13, the time for the first ping has
constantly been between 5 and 7 milliseconds, regardless
of network size.

The results indicate that the impact on first ping
performance is a function of the network size. Our im-
plementation uses Python dictionaries to store data for
identified network hosts. In IPv6 multiple IP addresses
are associated with one MAC (link-local, global, private)
and in turn need to be associated with the same switch
port and flow-entry. This forces the implementation to
iterate over all entries in the dictionary in order to re-
trieve/ update information because Python dictionaries
do not support multiple keys. simple_switch13 uses a
Python dictionary to record a MAC to port table that
can be accessed via a key value.

The focus of this work has been the on the functional-
ity rather than performance. In future versions, the cur-
rent data structure holding the cache could be replaced
by a proper in-memory database and the performance
reevaluated.

5 RELATED WORK
Cisco offers similar functionality, as presented in this
paper, in its wireless LAN controllers [6]. However their
solution can not be used to secure switched Ethernet
LANs and is not based on open network standards.

Faucet7 is an open source SDN controller application
that is developed as a drop-in replacement for switched
Ethernet enterprise networks. While Faucet offers some
basic security features, it lacks the specific IPv6 NDP
proxy functionality provided by our solution.

6 CONCLUSION
We could show that our original goal, improving NDP
security through the implementation of an intelligent
SDN-based proxy app, can be achieved with relative ease.
Our prototypical solution is able to harden the security
of a switched Ethernet network segment by sucessfully
mitigating common attack scenarios against NDP and
SLAAC.

Our approach does not require any changes to the
Neighbor Discovery Protocol or host implementations.
If each SDN switch is paired with a dedicated controller,
the fully distributed nature of the IPv6 address resolution
and neighbor discovery process is retained. Currently,
we drop all Multicast Listener Discovery (MLD) [20]
messages. Filtering MLD messages in semi-public access
networks can actually enhance the security of the net-
work [18]. So far we we did not test any attacks using
specific evasion techniques such as Extension Header
Chaining [10].

An SDN-application can provide additional features,
that are either lacking from regular Ethernet switches
or may be otherwise costly to implement. Our app is
capable of granting comprehensive insight into the state
of the network and generates intelligent notifications
concerning network events. The current solution could
easily be extended to provide additional functionality,
such as automatically blocking a port from being flooded
for some configurable interval.

During development and testing we found a few prob-
lems when dealing with OpenFlow. Hardware and soft-
ware switch implementations do not always support all
features specified in the standard. Further tests are neces-
sary in order to assess whether the measured performance
and functionality are adequate for a production network.

Our implementation is available on a public Git repos-
itory hosted by the University of Potsdam8.

7https://faucet.nz
8https://gitup.uni-potsdam.de/dnelle/ryu ipv6 ndp proxy
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