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ABSTRACT
The Internet was not designed with security in mind. A
number of recent protocols such as Encrypted DNS, HTTPS,
etc. target encrypting critical parts of the web architecture,
which can otherwise be exploited by eavesdroppers to infer
users’ data. But encryption may not necessarily guarantee
privacy, especially when it comes to metadata. Emerging
standards can protect the contents of both DNS queries and
the TLS SNI extensions; however, it might still be possible
to determine which websites users are visiting by simply
looking at the destination IP addresses on the traffic originat-
ing from users’ devices. We perform a measurement study
to determine the anonymity provided by IP addresses re-
sulting from the multiple sub-queries that are made as a
consequence of accessing a particular web page. We show
that, in most cases, an adversary can use the IP addresses
during a page load as a form of a fingerprint to infer the
original site identity.
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1 INTRODUCTION
The growing deployment of HTTPS [2] means that the web
browsing traffic of most users is commonly well protected.
Yet while plaintext HTTP is on the decline, DNS, another
protocol critical to web browsing, continues to be unen-
crypted. DNS has the potential to leak large amounts of
sensitive information, in particular the identities of site you
are visiting, to an array of network observers. Recently, how-
ever, IETF has developed encrypted versions of the DNS
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protocol. Most widely deployed are DNS-over-TLS and DNS-
over-HTTPS [1, 6], which protect the contents of both DNS
queries and responses from eavesdroppers by relying on
existing deployed end-to-end encryption protocols.1 In the
context of web browsing, however, a DNS request is followed
by an HTTP or HTTPS connection to a web server located
by the request. In the case of HTTP, the entire request is
sent in plaintext. With HTTPS, TLS protects the majority
of the communication section, yet some data is sent in the
clear. Most importantly, the server name indication (SNI)
extension [7] specifies the domain name of the web server,
which is used to select the appropriate certificate for the
TLS handshake. Essentially, even with encrypted DNS, the
queried domain is then immediately sent in the clear in the
SNI and the certificate!

To address this problem, starting with TLS version 1.3 [11],
the certificate messages are encrypted. Additionally, a draft
encrypted SNI extension [12] provides a mechanism to re-
move the last plaintext indicator of the domain name from
the network, leaving an observer with just an IP address. In
this paper, we start to study the question of how much infor-
mation the IP address reveals about the soon-to-be-hidden
domain name.

We adopt the model of an adversary who aims to recover
domain information by collecting forward mappings of vari-
ous candidate domains, and then using the answers to infer
the reverse mapping of a given IP. This can be done by col-
lecting popular domains from a data set such as the Alexa top
lists [14], Chrome User Experience Report [5] or certificate
transparency lists [9]. While none of these provides a com-
prehensive list of potential domains a user might visit, these
lists cover a large fraction of DNS lookups during typical
web browsing.

An observer may further make use of the fact that a typical
web page will cause dozens of objects to be loaded from a
number of different web servers. The set of all IPs contacted
by a page load constitutes a page load fingerprint (PLF), which

1Note that in the context of encrypted DNS, not the entirety of the DNS
resolution process is encrypted. Instead, the user connects to a recursive
resolver using end-to-end encryption, while the resolver will typically use
plaintext DNS queries to contact authoritative servers. The queries are
hidden from a local network observer, and someone observing traffic from
the recursive resolver may not necessarily be able to associate it with a
given users. Encrypted DNS does not prevent the resolver from learning
which domains the user is visiting; it may be possible to mitigate this by
connecting to the resolver over Tor or similar anonymity service [13].
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Figure 1: Sample view of website fingerprinting ad-
versary. The adversary is assumed to see the entirety
of the traffic originated by the client, but TLS1.3, en-
crypted DNS, and ESNI ensure that all but the meta-
data except for the IP address are encrypted.

can be used to distinguish different sites even if their main
origin domain uses an IP shared with different sites.

We therefore perform a measurement study to determine
the anonymity provided by each single IP address, as well as
the anonymity of page load fingerprints. We use data from
an instrumented web browser that visited the top 1 million
sites as ranked by Alexa [14] and analyze the anonymity sets.
Our initial findings show that while some pages provide a
certain degree of anonymity, in the vast majority of the cases,
a web page has a unique page load fingerprint. This means
that effective protection of domain metadata associated with
web browsing will require not only protocol changes that
remove the overt domain information but also changes to
web hosting infrastructure to prevent inferences.

2 PRELIMINARIES
2.1 Background and Threat Model
Website page loads often begin with a user action, such as
typing in a website address in a browser address bar or click-
ing on a link. Such events typically induce several distinct
network events, such as resolving domain names to IP ad-
dresses with DNS and then subsequently creating HTTP(S)
connections to fetch page resources. Often, rendering a single
page requires loading several subresources, such as scripts,
style sheets, and images. For example, to load the front page
of nytimes.com, browsers will first send a GET request for
index.html, which contains references to first or third party
resources (style sheets, Javascript files, images, etc.) neces-
sary to render the entire page. The browser will then recur-
sively fetch these resources, possibly by performing addi-
tional DNS queries and creating new HTTPS connections.

wordpress.com mail.ru

adservice.google.com ad.mail.ruanalytics.twitter.com

cctv.com

ASN:15169

2607:f8b0:4005:805::2002

ASN:13414 ASN:47764 ASN:4808

stats.wp.comgetrockerbox.com

ASN:13335 ASN:2635

Figure 2: Minimized domain tree for wordpress.com,
mail.ru, and cctv.com.

The addresses associated with connections made or used
while fetching subresources constitute a “page load finger-
print” (PLF). Each subresource connection is associated with
one or more IP addresses, each of which in turn is asso-
ciated with an Autonomous System (AS). As an example,
consider the “domain tree” shown in Figure 2. The page
wordpress.com has subresources that are ultimately ser-
viced by a variety of ASs (those in the blue box). It has one
subresource connection that is also shared by the mail.ru
page. The cctv.com page has no shared subresource connec-
tions. Considering only these connections, a single connec-
tion to adservice.google.com could refer to a page load
of wordpress.com or mail.ru. However, if one observes
the entire set of connections in the blue box, i.e., the PLF,
then they most likely are for wordpress.com rather than
mail.ru.

The goal of an address-based website fingerprinting attack
is to identify the target of a page load by examining PLFs.
Note that this is not the same threat model of encrypted
DNS or SNI, wherein the goal is to learn the destination of a
specific connection.
Our threat model encompasses a local adversary A ca-

pable of observing all outgoing IP packets between victim
clients and servers, as shown in Figure 1. Thus, A can moni-
tor the set of TLS connections from a client to any server, and
use this information to fingerprint connections. We assume
secure DNS and ESNI both (reliably) protect this informa-
tion from passive observers.2 Session-layer information such
as encrypted packet sizes, directions, and timing are out of
scope.

2.2 Related Work
Network connections by nature reveal information about
endpoint behavior. For example, a connection to 8.8.8.8 indi-
cates usage of Google’s DNS service. Likewise, a connection
to any address in a Cloudflare IP address block indicates use
of a service hosted by Cloudflare. The relationship between
network address and domains, especially when stable and
2Note that various side channels such as request and response sizes, as well
as cache timing side channels, may be used by A to reveal the contents of a
DNS query. For this paper, we assume such attacks are infeasible and focus
strictly on the network-layer connection information, such as IP addresses.
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unique, are a strong signal for website fingerprinting. Tre-
visan et al. [16] explored use of this signal as a reliable mech-
anism for website fingerprinting. They find that most major
services (domains) have clearly associated IP address(es),
though these addresses may change over time. Jiang et al.
[8] and Tammaro et al. [15] also previously came to the same
conclusion. Thus, classifiers that rely solely on network ad-
dresses may be used to aid website fingerprinting attacks.
In this paper we restrict our feature set to that which

we can obtain from HTTPS connections. Flow classifiers
using other protocol messages and features such as DNS
messages [4] and the TLS Server Name Indication (SNI) exist,
though we assume technologies such as DNS-over-TLS [1],
DNS-over-HTTPS [6], and Encrypted SNI [12] keeps this
information “safe” by encryption.

3 MEASUREMENT STUDY
To evaluate the potential privacy benefits of encrypted DNS
and SNI for a user who is browsing the web, we perform
a measurement study by first crawling the most popular
websites, as determined by Alexa [14], and then performing
DNS resolution on all domains involved in rendering each
website.

3.1 Data Set
We used a web measurement tool called MIDA, a highly
configurable web crawler built on top of Chromium and
the Chrome DevTools Protocol [10], to direct a Chromium
browser to visit Alexa’s top 1 Million websites [14] and fetch
the information associated with these requests, which in-
cludes an in-depth summary of the browser metadata, re-
source information, details about sub-query URLs, resources
hosted, etc. table 1 shows the result of our MIDA crawl on 1
million sites. Note that about 5% of sites experience a failure
during our attempt to visit them, so our data set is slightly
smaller than a million. On average, each site loaded approxi-
mately 96 different URLs from 16.5 different domains. The
web crawl was performed in late March 2019.

We then performed name resolution on all of the domains
from the 90 million URLs involved in the web crawl using
zdns3, a high-performance bulk DNS resolution tool.We used
zdns in iterative mode, bypassing our local resolver and its
cache. DNS results are well known to vary across both time
and location; all of our lookups were performed from a single
vantage point at the University of Illinois within a roughly
two-hour time span. We note that an adversary could use
tools such as zdns to collect similar data sets, using a vantage
point that matches that of the victim. In addition to look-
ing up the IP addresses corresponding to each domain, we
tracked the sequence of CNAME redirections, which we used
3https://github.com/zmap/zdns

Table 1: Web Crawl Data based on Alexa top 1M sites.
944 094 sites were successfully loaded.

Request type Count
Document (HTML) 4 162 754
Image 43 444 344
Script 23 379 941
Stylesheet 8 633 523
XHR 4 675 860
Font 4 051 221
Other 1 647 949
Fetch 347 730
Media 167 775
EventSource 1 718
Manifest 749
TextTrack 616
Total 90 514 000

Table 2: Resource types for requests that use
unique domains (domains that resolve to an IP
with anonymity set 1).

Request type Count Frac of all requests
Document (HTML) 554 753 13.3%
Image 7 347 703 16.9%
Script 3 234 593 13.8%
Stylesheet 1 262 243 14.6%
XHR 1 052 933 27.0%
Font 235 446 5.8%
Other 387 916 23.5%
Fetch 34 294 9.9%
Media 24 646 14.7%
EventSource 190 11.1%
Manifest 134 17.9%
TextTrack 21 3.4%
Total 14 134 872 15.6%

to attribute domains to content distribution networks (CDNs)
using heuristics from the cdnfinder tool [17]. Note that this
attribution is imperfect, since many CDNs do not utilize de-
scriptive CDNs. We also perform reverse DNS lookup (PTR)
for each of the IP addresses returned by forward lookups.

3.2 Single IP lookups
Among the 90million object requests in our data set, there are
1 819 087 unique domain names. We were able to successfully
resolve 1 795 506 (98.7%) of these, obtaining 741 049 distinct
IP addresses. (Note that each domain name resolves to an
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Figure 3: If an IP address is hit by several different
web sites, then a reverse DNS lookup will not pro-
vide much information about which website the user
was looking at. But if the IP address has a one-to-one
backward mapping to a website then the chances of
the user’s web activity being profiled increase signifi-
cantly which is a threat to the user’s privacy.

average of 1.46 IP addresses, but many domain names map
to the same address.)

We can now calculate how well an adversary, armed with
this data set, can map an IP back to a domain name. For
each IP address, we compute the set of domain names that
map to it as its anonymity set. Figure 4 shows a histogram of
these sizes. A slight minority of the IPs in our data set (47.6%)
correspond to a single domain. For these domains, under our
threat model, where the adversary knows the set of potential
addresses a user may look up and is able to perform forward
lookups on them, encrypted DNS provides little to no benefit.
Note that this technique is much more successful than using
reverse DNS—only 34 840 domains resolved to IPs that had
the corresponding domain as its rDNS entry. The median
anonymity set size is 2 and the average is 3.14. Some IP

Figure 4: A histogram of IP anonymity set sizes. For
each IP in our dataset we calculate the number of
domains that map as its anonymity set. The median
anonymity set has size 2, and the average is 3.14. The
largest is 16 050 (only the top 100 are shown in the fig-
ure for clarity).

Figure 5: A CDF of the anonymity set size that do-
mains map to.

addresses map to a large set of addresses, including one that
corresponds to over 16 000 domains.
Figure 5 shows a cumulative distribution function of the

anonymity set sizes that each domain belongs to. Note that
since larger anonymity set sizes have more domains, a me-
dian domain corresponds to an IP address of an anonymity
set size of 4.

We do note that there is some potential for consolidation
that is present here. We use the domain names returned dur-
ing a lookup (including CNAMEs) to classify a sample of
our IP addresses as belonging to various content distribution
networks, as shown in fig. 6. This shows that a significant
fraction of addresses come from CDNs. Today, many CDNs
are able to serve a large number of sites from a small set
of IP addresses (a feature exploited by domain fronting [3]).
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Figure 6: The figure shows the frequency of the IP ad-
dresseswith a uniquemapping to awebsite that have a
CDN associated with them. Approximately 67% of the
domains with a one-to-one IP mapping have no CDN
associated with them and thus can serve as potential
privacy threats as the destination websites can be deci-
phered by an adversary through a reverseDNS lookup.

However, it is common to assign different customers to dif-
ferent IPs, in part to support older clients that do not send an
SNI during an HTTPS connection. As such clients become
more rare, consolidating large number of domains to a small
number of IPs should be possible.

We also examine the types of resources that are served by
“identifying” IPs. Table 2 shows the fraction of resource loads
associated with IPs that have an anonymity set of size 1. It
is notable that, among popular resource types, fonts are less
likely to map to a singleton anonymity set, while XHRs are

Table 3: Resource types for requests that use unique
IPs: IPs that are only referenced by a single website.
We also show the fraction of all requests of that type
that maps to a unique IP.

Request type Count % of requests
Document (HTML) 427 501 10.3%
Image 10 140 704 23.3%
Script 3 660 992 15.6%
Stylesheet 2 315 329 26.8%
XHR 355 601 7.6%
Font 426 367 10.5%
Other 391 693 23.8%
Fetch 9 273 2.6%
Media 33 7376 20.1%
EventSource 170 9.9%
Manifest 243 32.4%
TextTrack 34 5.5%
Total 18 065 564 20.0%

more likely. However, the size of the anonymity set does not
tell the whole story; for example, the IP 104.19.195.151 has
an anonymity set size of only 3 domains, but one of them
is cdnjs.cloudflare.com. This domain is referenced on over
100 000 sites in our data set, so observing an IP connection
to it reveals limited information about what site the user is
visiting. On the other hand, table 3 shows requests that map
to uniquely identifying IPs, i.e., ones that can be resolved
from only a single website in our dataset. About 20% of
requests are uniquely identifying in this way; notably, XHRs
are less likely to map to site-unique IPs whereas stylesheets
and images are more likely. 68% of the IPs in our data set are
unique to a single site, and a total of 402 524 (42.6%) of sites
use at least one resource whose domain maps to a site-unique
IP.

3.3 Web Front Pages
We next consider using address fingerprinting on the HTTPS
connection to the main server associated with a site. We
compute a mapping of the main domain of a site to a set
of IP addresses. We then identify the set of websites that
map to the same set of IP addresses and compute anonymity
sets. The corresponding histogram is shown in fig. 7. 413 576
websites map to a set of IPs that is unique to that site; on the
other hand, there is a cluster of 15 520 websites that all map
to the same IP address.

3.4 Page Load Fingerprints
In the next experiment, we consider page load fingerprints.
We compute a PLF by considering the set of domains that
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Figure 7: A histogram of IP set anonymity sets corre-
sponding to the “front page” server for each website

are referenced by all of the URLs involved in rendering a
particular website and taking the union of the IP addresses
that these domains resolve to. When a user visits a website,
only a subset of the addresses in the PLF will be contacted,
since some domains resolve to multiple IP addresses, only
one of which will be chosen, and some resources may be
cached at the client. (Additionally, connection coalescing
may reduce the number of contacted IPs.) As a result, the
fingerprintability of each individual visit to a site may vary.
Even if two sites, A and B, have different PLFs, it is possible
that a visit to A will produce a set of IPs that matches the
PLF for B. However, the difference in PLFs means that it is
possible that some visit can be mapped to only one of the
two sites.
We therefore consider define the the PLF-anonymity set

of a website to include only those sites that have an identical
PLF. The vast majority of websites (95.7%) have a unique
PLF, suggesting that there is a risk of identifying that a user
is visiting the site solely from a list of contacted IPs. The
distribution of PLF-anonymity set sizes is shown in fig. 8.

4 CONCLUSION
Our measurements show that, in the context of web brows-
ing, DNS and SNI privacy offers limited protection against
an adversary who knows a plausible set of sites a user might
visit (even if the set is quite large), and who performs for-
ward lookups to infer the domain names and sites associated
with given IPs. Using a crawl of Alexa top 1 million sites,
we find that nearly half of all IPs involved in the crawl cor-
respond to a unique domain name, and over 95% of sites
have a unique set of IPs corresponding to the domains of all
the sub-resources. We do identify a significant opportunity
for content distribution networks (CDNs) to offer additional

Figure 8: Anonymity set distribution for IP sets. We
look up all IPs that correspond to domains that are
referenced by any object within a page load. We then
count the number of sites that share the same total
set of IPs. Among the 944 094 websites in our data set,
903 199 (95.7%) have a unique IP set. On the other hand,
the largest anonymity set is a cluster of 903 websites.

protection by coalescing more domains onto the same IP
address.
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