Towards Core-Stateless Fairness on Multiple Timescales

Szilveszter Nádas (Ericsson Research)
Gergő Gombos, Ferenc Fejes and Sándor Laki (ELTE Eötvös Loránd University)

szilveszter.nadas@ericsson.com
http://ppv.elte.hu
Goal: Extend fairness to multiple timescales

- Define multi-timescale fairness
- Build on existing framework
 - Re-using the existing Per Packet Value-based resource sharing framework
 - Build on Multi-Timescale Bandwidth Profile (MTS-BWP)
- Provide efficient and versatile implementation
 - provide fine-grained fairness on multiple timescales
 - that is independent of traffic mixes and resource bandwidths.
- Demonstrate advantages

"getting a scheme to instantly serve web flows for improved performance while maintaining fairness between other persistent traffic remains an open and significant design problem to be investigated" [1]

Overview of Core-Stateless Resource Sharing
Example: Per Packet Value based CS RS

— PPV is a Core-Stateless Resource Sharing framework, which
 — allows a wide variety of detailed and flexible policies;
 — enforces those policies for all traffic mixes; and
 — scales well with the number of flows

— Packet Marking at the edge
 — encodes policy into a value marked on each packet

— Resource Node — AQM and Scheduling
 — behavior based on packet marking only
 — no need for
 — policy information
 — flow identification
 — separate queues
 — very fast and simple implementations exist
Bitrate measurement and timescales

— **Bitrate** is a derived measure
 — Discrete packet arrivals are translated to bitrate
 — Bitrate always has a timescale associated

\[\text{Bitrate} = \frac{\text{Volume (bits)}}{\text{Time (sec)}} \]

— **Natural timescales**:
 ~ RTT
 ~ 1s – speed shown in apps
 ~ Session duration (target)
 ~ 1 minute: short term history and activity
 ~ 10 minutes: longer term activity
 ~ Month: monthly cap
Fairness on multiple timescales

— When to measure bitrate
 — When source is active – to describe performance
 — During both active and inactive periods – to judge the fairness of resource sharing

— Fairness goal on multiple timescales
 — Balanced fairness: multiple timescales are considered
 — Allow higher share on shorter timescales for flows below their fair share in longer timescales
 — We aim at smooth transition as the relations between the rates measured on different timescales changes
Per Packet Value marking defined by Throughput-Value Functions (TVF)

- For a single timescale
- Fine grained control
- Independent of
 - Traffic mix
 - Resource bandwidth
- Each of these result in a Packet Value limit:
 - Congestion Threshold Value (CTV)
- Intersection of the TVFs and the CTV defines desired resource sharing

![Graph showing Per Packet Value marking defined by Throughput-Value Functions (TVF)]
Packet marking based on Rate Measurement

IN pkt stream

R: rate measurement

r=rnd([0,R])

PV=TVF(r)

OUT pkt stream

PPV = 100

random = 20

Meas. Rate = 48
Rate measurement algorithms (RMA) and examples

- Token Bucket Based RMA
 - For the ~RTT timescale only
 - Models the fair throughput and buffer share at the bottleneck
 - A single Token Bucket
 - its rate changes when empty/full
- Sliding window-based RMA
 - All longer timescales (TS)
 - Rate = “amount of bits arrived in [t-TS,TS]/TS
 - Efficient approximation of this (see article)
 - Time-Dependent Rate Measurement algorithm with Time Window Moving Average (TDRM-TWMA)

When transmission starts
- R₁ > R₂ > R₃ > R₄

Rate decrease/transmission stop
- R₁ < R₂ < R₃ < R₄
Multi-Timescale Throughput-Value Function (MTS-TVF)

- (Single-TS) TVF
 - 1 TVF per flow type

- MTS-TVF
 - 1 TVF per TS per flow type
Multi-Timescale Throughput-Value Function (MTS-TVF)

Resource Sharing

- Dominant timescale \((TS_i) \)
 - When the rate measurement on that timescale \((R_i) \) is the largest
 - (or the longest timescale among largest and roughly equal rate measurements)

- Example: Two flows of the same flow type
 - One has dominant \(TS = TS_1 \) (just arrived)
 - The other has \(TS = TS_4 \) (long history)
 - They shall share the bottleneck according to \(TVF_4 \) vs. \(TVF_1 \)
 - as if they would be of different flow types in the single-TS framework
 - But: we aim at smooth transitions when relation between \(R_i \)s change
Multi-Timescale Bandwidth Profile (MTS-BWP)

- Provides multi-timescale fairness among flows
- Only in well defined scenarios
 - Number of flows
 - System capacity
 - A 4 timescale, 4 Drop precedence example
 - (ET = Enough tokens)
- Any MTS-TVF can be quantized to an MTS-BWP
 - Not practical implementation
 - E.g. 65k different PVs → 65k*4 token buckets
Practical packet marking using MTS-TVF

- Using a quantized MTS-TVF to MTS-BWP
- Multi-Timescale Bandwidth Profile (MTS-BWP)
 - Also measures rate on each timescale (indirectly)
 - The limiting Token Buckets determine the rate measurement
 - At these rate measurements it switches between timescales,
 - i.e. between TVFs
Efficient packet marking based on Multi-Timescale Throughput-Value Function

- Measure rate for all the timescales
 - R_4, R_3, R_2, R_1
 - At R_is determine distance between the TVFs
- Blue region of the TVFs are used
 - Changes as R_is change
- Algorithm
 - r is a uniform $\text{rand} \ [0, R_1]$
 - Determine right region $i = 1 \ldots 4$
 - Relation between R_is and r
 - Determine Δ_is

\[
PV = TVF_i \left(r + \sum_{j=i}^{k-1} \Delta_j \right)
\]
Simulations

- NS-3, NS-3 DCE (TCP Congestion Control)
- Core scheduler unchanged from our article “Towards a Congestion Control-Independent Core-Stateless AQM”
 - 10 ms delay target
- A flow consist of either
 - 1 DCTCP connection or
 - 4 Cubic TCP connections (faster slow start)
- $TS=[10\text{ms}, 1s, 5s, 10s]$
- TVF_4 is Gold or Silver as single-TS TVF
 - Shorter TSs weights 2, 4, 8, i.e. $TVF_3(x) = TVF_4(x/2), TVF_2(x) = TVF_4(x/4), TVF_1(x) = TVF_4(x/8)$.
Greedy flows of the same traffic class (DCTCP)

Multi-Timescale PPV

New flow is boosted

Immediate fair share

Reference: Single-Timescale PPV
Greedy flows of the same traffic class

(a) Flow-Time Average

(b) 5s Time-Window Average

High initial boost

Reaches 5s avg fair share in ~1s
Simple adaptive streaming model
MTS fairness for on-off pattern

- Faster startup (e.g. time-to-play is less)
- CUBIC-MTS
- CUBIC-Ref.

Fills the playout buffer faster
Continuous arrival: 10 new flows every 10s

New flows are temporarily boosted

Rest have equal sharing
Discussion

— Initial results look promising
 — Multi-timescale fairness works
 — Significant performance gains
 — Advantage for new flows/starting phase
 — Better long term fairness for flows with on-off behavior

— Future work
 — What is the practical number of timescales to be used?
 — How shall the timescales be dimensioned?
 — How to design multi-timescale TVFs?
 — Does it make sense to use a different kind of policy at various timescales?
 — What further policies that have practical relevance can be described in this model?
http://ppv.elte.hu