Oblivious DNS: Practical Privacy for DNS Queries

Paul Schmitt (Princeton)
Anne Edmundson (Princeton)
Allison Mankin (Salesforce)
Nick Feamster (Princeton)
Conventional DNS

Client ➔ Recursive DNS Server ➔ Root Server ➔ TLD Server ➔ Authoritative Server

www.foo.com?
Conventional DNS

- Client identity and query are viewable at and prior to the recursive (ISP) server
- DNS operators can be targets of data requests
Conventional DNS

- Services now offer open DNS resolvers with promise of deleting logs
- Shifts trust to these providers
- Other techniques do not fully protect user privacy:
 - DNS-over-TLS
 - DNS-over-HTTPS
 - QNAME minimization
Oblivious DNS

Goal:
- Separate user identity from query

Requirements:
- Compatible with existing infrastructure
- Minimize overhead
Oblivious DNS

Goal:
- Separate user identity from query

Requirements:
- Compatible with existing infrastructure
- Minimize overhead
ODNS Crypto Overhead

- Roughly ~1-2 ms for crypto operations using standard libraries
- Symmetric encryption/decryption is lightweight
ODNS Crypto Overhead

- Roughly ~1-2 ms for crypto operations using standard libraries
- Symmetric encryption/decryption is lightweight
ODNS WAN Latency

- Latency to ODNS Resolver added to each query
- Widespread anycast deployment to mitigate WAN latency
Key Distribution

- Anycast for scalability
- Special query reaches the nearest anycast server
- Server responds with public key and name
ODNS Overhead: Page Load Time

Different CDNs / javascript resources
ODNS Overhead: Page Load Time

How is ODNS better in some cases?
ODNS Overhead: Page TTFB

Directed to CDNs that are closer
Impact on Recursive Cache

- Simulated with trace of ~8M queries
- If caching at stub, ODNS reduces traffic burden on the recursive resolver
Impact on Cache (2)

- Undesirable cache entries?
- Some resolvers ignore TTL = zero
- “Bad” == ODNS entry causing non-ODNS to be ejected
Discussion

● Challenges:
 ○ EDNS0 Client Subnet
 ○ QNAME length
 ○ 0x20 bit encoding

● Policy-based routing
Thank you

Paul Schmitt
pschmitt@cs.princeton.edu
Backup slides
Why Not Tor?

- Latency (median)
 - ODNS: 31.31 ms
 - Tor: 276.76 ms
- Censorship concerns
- Exit node can be associated with traffic
Protocol

- Stub encrypts query with session key and session key with resolver public key
- Stub appends resolver name to encrypted query
- ODNS resolver decrypts session key with private key, query with session key, and encrypts response
QNAME Length

- QNAME = 4 sets of 63 bytes
- base64 encoding
 - 0x20 bit encoding issue
EDNS0 Client Subnet

- Must avoid some recursive resolvers

<table>
<thead>
<tr>
<th>Open Recursive Resolver (IP)</th>
<th>EDNS0 Client Subnet</th>
<th>0x20</th>
</tr>
</thead>
<tbody>
<tr>
<td>Google (8.8.8.8)</td>
<td>✓</td>
<td></td>
</tr>
<tr>
<td>Dyn (216.146.35.35)</td>
<td>✓</td>
<td></td>
</tr>
<tr>
<td>Fourth Estate (45.77.165.194)</td>
<td>✓</td>
<td></td>
</tr>
<tr>
<td>GreenTeamDNS (81.218.119.11)</td>
<td>✓</td>
<td></td>
</tr>
<tr>
<td>Cloudflare (1.1.1.1)</td>
<td>✓</td>
<td></td>
</tr>
<tr>
<td>Verisign (64.6.64.6)</td>
<td>✓</td>
<td></td>
</tr>
<tr>
<td>Quad9 (9.9.9.9)</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Level3 (209.244.0.3)</td>
<td></td>
<td></td>
</tr>
<tr>
<td>OpenDNS Home (208.67.222.222)</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Norton ConnectSafe (199.85.126.10)</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Comodo Secure DNS (8.26.56.26)</td>
<td></td>
<td></td>
</tr>
<tr>
<td>DNS.WATCH (84.200.69.80)</td>
<td></td>
<td></td>
</tr>
<tr>
<td>SafeDNS (195.46.39.39)</td>
<td></td>
<td></td>
</tr>
<tr>
<td>FreeDNS (37.235.1.174)</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Hurricane Electric (74.82.42.42)</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Ultra (156.154.71.1)</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>