Can We Containerize Internet Measurements?

Chris Misa (University of Oregon)
Sudarsun Kannan (Rutgers University)
Ramakrishnan Durairajan (University of Oregon)
Outline

• Containerized measurement issues
• Proposed solution: MACE
• Evaluation of MACE
Containers

• Lightweight virtualization mechanism
 – Package, deploy, isolate
Containers

• Lightweight virtualization mechanism
 – Package, deploy, isolate
• Based on recent developments in Linux
 – Namespaces, cgroups
Containers

• Lightweight virtualization mechanism
 − Package, deploy, isolate
• Based on recent developments in Linux
 − Namespaces, cgroups
• Rapidly replacing VMs
 − Smaller, faster
Motivation

• Streamline experiments
 – Package scripts, tools, libraries
 – Consistent interface
Motivation

• Streamline experiments
 – Package scripts, tools, libraries
 – Consistent interface
• Expose new, cloud-native vantage points
 – Azure
 – AWS
 – GCP
 – etc.
Motivation

• Streamline experiments
 - Package scripts, tools, libraries
 - Consistent interface
• Expose new, cloud-native vantage points
 - Azure
 - AWS
 - GCP
 - etc.
• Less CPU and memory overheads than VMs [1]

PlanetLab since 2012 [0]
Sure we can!
Sure we can!

Why not?
Network Isolation

- Extra latency [2]
 - \(\sim 50\mu s\) in resting system
Network Isolation

- Extra latency [2]
 - ~50μs in resting system
- Co-located containers
 - Up to 300μs depending on traffic
Network Isolation

- Extra latency [2]
 - ~50μs in resting system
- Co-located containers
 - Up to 300μs depending on traffic
- Biased measurement results
 - Non-constant latency overheads
Network Isolation

- Extra latency [2]
 - \(\sim 50\mu s \) in resting system
- Co-located containers
 - Up to 300\(\mu s \) depending on traffic
- Biased measurement results
 - Non-constant latency overheads
- Slim [3], FreeFlow [4] don’t help
 - Flow-based, RDMA
Importance of Latency

• An error of 300μs translates to
 – 90km at the speed of light [6, 7]
 – $1.2 million for online trading [5]
Importance of Latency

• An error of 300μs translates to
 – 90km at the speed of light [6, 7]
 – $1.2 million for online trading [5]
• Hard to isolate latencies
 – OS, virtualization, physical
How to account for latency in a running container system?
How to account for latency in a running container system?

MACE:
Measure the Added Container Expense
Outline

• Containerized measurement issues
• Proposed solution: MACE
• Evaluation of MACE
MACE: Goals

• Packet-level latencies
 - Ingress and egress
 - High accuracy
MACE: Goals

• Packet-level latencies
 – Ingress and egress
 – High accuracy
• Minimal impact on network performance
MACE: Goals

• Packet-level latencies
 – Ingress and egress
 – High accuracy
• Minimal impact on network performance
• Consistent, container-friendly interface
MACE: How?

- Linux Kernel Tracepoints [9]
 - Hooks into kernel
 - Net device and system call subsytems

Source: http://www.brendangregg.com
MACE: How?

• Linux Kernel Tracepoints [9]
 – Hooks into kernel
 – Net device and system call subsytems
• Existing tracers
 – Large perturbation

Source: http://www.brendangregg.com
MACE: How?

• Linux Kernel Tracepoints [9]
 - Hooks into kernel
 - Net device and system call subsytems

• Existing tracers
 - Large perturbation

• Kernel module
 - For container hosts
 - Report to containers

Source: http://www.brendangregg.com
MACE: Design

- Filter trace events
 - Interface
 - Namespace
MACE: Design

- Filter trace events
 - Interface
 - Namespace
- Correlate events in hash tables
 - Ingress
 - Egress
MACE: Design

- Filter trace events
 - Interface
 - Namespace
- Correlate events in hash tables
 - Ingress
 - Egress
- Maintain list of latencies
 - Report via device file
MACE: Implementation

- High accuracy
 - Read tsc for timing

Open source at: github.com/chris-misa/mace
MACE: Implementation

- High accuracy
 - Read tsc for timing
- Low perturbation
 - Only lock hash buckets
 - Atomic types for ring buffer

Open source at: github.com/chris-misa/mace
MACE: Implementation

- High accuracy
 - Read tsc for timing
- Low perturbation
 - Only lock hash buckets
 - Atomic types for ring buffer
- Consistent API
 - Interface is namespace-aware
 - Allow and enable per container

Open source at: github.com/chris-misa/mace
MACE: Interface

• Select the container’s namespace:

 # echo 1 > sys/class/mace/on
MACE: Interface

- Select the container’s namespace:

  ```
  # echo 1 > sys/class/mace/on
  ```

- Execute measurement:

  ```
  # ping -c 10 google.com
  ```
MACE: Interface

• Select the container’s namespace:

 # echo 1 > sys/class/mace/on

• Execute measurement:

 # ping -c 10 google.com

• Collect latencies:

 # cat dev/mace

 [1552589043.315681] (1) egress: 80932
 [1552589043.315937] (1) ingress: 46208
 [1552589043.316012] (2) egress: 13699
 ...

cmisa@cs.uoregon.edu
How do we know those numbers are correct?
Outline

• Containerized measurement issues
• Proposed solution: MACE
• Evaluation of MACE
Evaluation: Methodology

• No direct method
Evaluation: Methodology

• No direct method
• Use difference in RTT
Evaluation: Methodology

- No direct method
- Use difference in RTT
 (1) RTT from container
Evaluation: Methodology

• No direct method
• Use difference in RTT
 (1) RTT from container
 (2) Latency overheads from MACE
Evaluation: Methodology

• No direct method
• Use difference in RTT
 - (1) RTT from container
 - (2) Latency overheads from MACE
 - (3) ‘corrected’ RTT
 = (1) minus (2)
Evaluation: Methodology

• No direct method
• Use difference in RTT
 (1) RTT from container
 (2) Latency overheads from MACE
 (3) ‘corrected’ RTT
 = (1) minus (2)
 (4) Compare with RTT measured from hardware
Evaluation: Setting

- Ping across single physical link
 - Minimize network latency
Evaluation: Setting

- Ping across single physical link
 - Minimize network latency
- Add co-located containers
 - Flood ping
 - Worst-case traffic setting
Evaluation: Setting

- Ping across single physical link
 - Minimize network latency
- Add co-located containers
 - Flood ping
 - Worst-case traffic setting
- Run on Cloudlab [10]
 - Some RTT noise from experiment network
Results: RTT Bias

- Reported RTT - actual RTT
 - ‘raw’ container (blue)
 - ‘corrected’ container (black)
Results: RTT Bias

- Reported RTT - actual RTT
 - ‘raw’ container (blue)
 - ‘corrected’ container (black)
- MACE-corrected RTT is within 20μs in worst case
Results: RTT Bias

- Reported RTT - actual RTT
 - ‘raw’ container (blue)
 - ‘corrected’ container (black)
- MACE-corrected RTT is within 20μs in worst case
- Traffic impacts all software RTTs
 - Up to 100 μs
Results: Coverage

- Latency reports / packets (%)
Results: Coverage

- Latency reports / packets (%)
- Decrease due to collisions in hash tables
Results: Coverage

- Latency reports / packets (%)
- Decrease due to collisions in hash tables
- Increased table size can improve coverage to 100%

cmisa@cs.uoregon.edu
Results: Perturbation

- Instrumented RTT minus non-instrumented RTT
 - MACE (black)
 - Ftrace (blue)
Results: Perturbation

- Instrumented RTT minus non-instrumented RTT
 - MACE (black)
 - Ftrace (blue)
- MACE scales well as traffic increases
Results: MACE Functions

- Execution time of MACE functions
 - Tracepoint probes
 - Hash table management
 - Latency list management
Results: MACE Functions

- Execution time of MACE functions
 - Tracepoint probes
 - Hash table management
 - Latency list management
- System call tracepoints are slow
 - Accessing data in userspace
 - Needed for correlation
Future Goals

• Improving MACE
 – Add TCP, UDP support
 – Hardware timestamps
 – Better in-flight correlation
 – Ease of application-level correlation
Future Goals

• Improving MACE
 - Add TCP, UDP support
 - Hardware timestamps
 - Better in-flight correlation
 - Ease of application-level correlation

• Applying MACE
 - Improving measurement accuracy (e.g. geolocation)
 - Virtual network telemetry
Summary

• Containerized measurement issues
• Proposed solution: MACE
• Evaluation of MACE
Thank You!

• UO VPRI* and NSF
• Anonymous reviewers
• CloudLab team

* This work is supported by a fellowship from the University of Oregon Office of the Vice President for Research and Innovation.

cmisa@cs.uoregon.edu
Questions?
Citations