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ABSTRACT
Linux network namespaces are a cost-effective and scalable
alternative to physical systems for the design and experi-
mental evaluation of network protocols. These evaluations
are required for a practical understanding of how various
networking algorithms would perform in the real world.
However, manually setting up testbeds and obtaining results
in the desired format using network namespaces can be quite
cumbersome and error-prone. Althoughwriting scripts could
make these tasks easier, it becomes tedious and impractical
if the network under consideration is large and complex. In
this paper, we propose a python based package called NeST
(Network Stack Tester) to perform tests for different conges-
tion control algorithms and queue disciplines. It uses Linux
network namespaces and provides APIs to create complex
emulated networks, run tests and extract the statistics using
iproute2 and netperf in a single python script. We validate
the results obtained from NeST against those obtained from
a physical testbed, and a virtual testbed setup manually by
using network namespaces. The experiments with NeST are
easy to reproduce because it is a wrapper around the existing
tools and does not introduce new system dependencies.

CCS CONCEPTS
• Networks→ Network experimentation.

KEYWORDS
Network Namespaces, Network Stack, Emulation
ACM Reference Format:
Shanthanu S Rai, Narayan G, DhanasekharM, Leslie Monis, Mohit P.
Tahiliani. 2020. NeST: Network Stack Tester. In Applied Networking
Research Workshop (ANRW ’20), July 27–30, 2020, Online (Meetecho),
Spain. ACM, New York, NY, USA, 6 pages. https://doi.org/10.1145/
3404868.3406670

Publication rights licensed to ACM. ACM acknowledges that this contribu-
tion was authored or co-authored by an employee, contractor or affiliate of
a national government. As such, the Government retains a nonexclusive,
royalty-free right to publish or reproduce this article, or to allow others to
do so, for Government purposes only.
ANRW ’20, July 27–30, 2020, Online (Meetecho), Spain
© 2020 Copyright held by the owner/author(s). Publication rights licensed
to ACM.
ACM ISBN 978-1-4503-8039-3/20/07. . . $15.00
https://doi.org/10.1145/3404868.3406670

1 INTRODUCTION
Performing network experiments and studying network pro-
tocol behavior is a non-trivial process. The most commonly
used approach to perform network experiments is to setup a
physical testbed that closely represents the desired network.
But it is expensive even for relatively small networks and
more importantly, not scalable. Linux network namespaces
are a suitable alternative to physical testbeds because we
can quickly setup a lightweight emulation testbed for the
experimental evaluation. Setting up a network environment
in a single system using network namespaces enhances the
reproducibility aspects, and minimizes the maintenance and
cost overhead. Nevertheless, building a complex topology
using network namespaces can be a tedious process, starting
with the creation of a large number of namespaces, estab-
lishing connections, generating different traffic patterns and
extracting per-node or per-flow statistics for evaluation.
Some tools provide pre-defined experiments and intu-

itive means to collect the statistics (e.g., Flexible Network
Tester [5]), whereas others help to quickly build a virtual
network topology within the system (e.g., Mininet [7]). How-
ever, integrating the benefits of these tools is not straightfor-
ward because it requires an in-depth understanding of the
APIs of both the tools and additional efforts to verify that
they interact correctly. Tools that collectively provide sup-
port for topology creation and conducting experiments (e.g.,
transperf) are limited in terms of topology customization.
In this work, we propose NeST1, an open source Python

package that simplifies the process of performing networking
experiments by using Linux network namespaces. It provides
easy-to-use APIs to build a virtual network topology, run
experiments and collect statistics in different data/graphical
formats. Multiple instances of the same network topology
can co-exist, and different experiments can be run in parallel
on every instance. It provides APIs to use netperf to generate
network traffic between any pair of nodes. Lastly, NeST pro-
vides APIs to extract the statistics of required attributes from
the experiment. All these features ensure that using NeST re-
quires fewer pre-requisites (e.g., prior knowledge of network
namespaces to setup virtual testbeds or experience about
setting up physical testbeds) compared to Flexible Network
Tester (Flent) and other tools.
1https://nitk-nest.github.io/
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# Create two nodes

n0 = Node('n0')

n1 = Node('n1')

# Connect nodes and get corresponding interfaces

(n0_n1, n1_n0) = connect(n0, n1)

# Assign addresses to the interfaces

n0_n1.set_address('10.0.0.1/24')

n1_n0.set_address('10.0.0.2/24')

# Set link properties

n0_n1.set_attributes('5mbit', '5ms')

# Create an experiment named 'mytest' to run

# on the built topology

exp = Experiment('mytest')

# Add 1 flow from n0 to n1 from time t=0s to t=10s

exp.add_flow(Flow(n0, n1, n1_n0.get_address(), 0, 10, 1))

# Run the experiment

exp.run()

Peer to peer topology

Figure 1: NeST Architecture

2 NeST
NeST uses Linux network namespaces to setup a virtual net-
work with hosts and routers. Internally, routers are the same
as hosts but with extra configurations essential for routing.
Since network namespaces virtualize only the network stack,
setting up a complex topology is fairly quick, and collecting
network statistics is simpler because network namespaces
are isolated from each other. NeST provides APIs to config-
ure the testbed, use the required tools to generate flows and
collect results. It internally assigns a unique identifier to the
topology created to avoid naming collisions, and maintains a
map between its internal names and the user defined names.
NeST is similar to Mininet in terms of topology creation.

Mininet is more suitable for Software Defined Networking
rather than as a tool for testing network protocols. It provides
an abstraction to tools commonly used for testing the net-
work configuration like ping, pingall, and iperf (for testing
bandwidth), but unlike NeST, does not provide an abstraction
for advanced traffic control options using tc, running netperf
for traffic generation and ss for collecting socket statistics.

2.1 Architecture
Figure 1 shows the architecture of NeST. It is a minimal
wrapper around iproute2 and networking tools. Internally, it
is a collection of modules (Engine, Topology and Experiment),
where each module provides a specific service. This enforces
a modular design, which makes it relatively easy to make
changes in the existing code, implement new features and
add other traffic generators, such as iperf and httperf.
Engine module runs iproute2 and netperf commands. It

provides a set of low level APIs for other modules. Hence,
Engine is the closest module to the kernel. Topology module
creates the topology by using virtual nodes and interfaces.
Virtual nodes are setup using network namespaces and vir-
tual interfaces are setup by using tools in iproute2. These
features are provided to the user as an object-oriented API.

NeST internally auto-generates unique identifiers for the
topology created by the user. This makes sure that no two
namespaces have the same name, and also allows multiple
network topologies with entities having the same user given
names to co-exist in the system. The mapping between user
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given names and NeST’s internal names are maintained in a
Topology Map, which is a JSON-like data structure.
Experiment module provides APIs to generate traffic and

extract the statistics from nodes and interfaces. While pre-
senting results to the user, Topology Map is used to convert
NeST’s internal names to user given names. Experiment is a
diverse module because it: (i) handles invoking networking
tools at different times, (ii) parses output of various tools and
compiles them, and (iii) dumps the results as a timestamped
JSON file and plots the requested performance parameters.

2.2 API demonstration
Figure 1 shows the code snippet for a short lived flow in
a simple peer to peer topology. It demonstrates the APIs
provided by NeST. First, two nodes are created, namely n0
and n1. This internally creates two network namespaces
with unique names auto-generated by NeST. The mapping
between user-given names and NeST names is maintained
in Topology Map. Subsequently, the nodes are connected by
using the connect API. This API creates a pair of virtual
Ethernet (veth) devices and assigns them to n0 and n1. Next,
IP addresses are assigned to these interfaces. Afterwards, the
set_attributes API is used to set the properties of the link
from n0 and n1. Note, the link attributes are being assigned
to the interface at n0. The peer to peer topology is now setup.

Next, an experiment called ‘mytest’ is setup and a flow is
added in it. The Flow API takes in arguments for source node,
destination node, destination address to uniquely identify it-
self. Additionally, the start time, stop time and number of flows
are specified as arguments. Note, just a single flow is added
in this case. But NeST allows to add multiple flows between
any two pairs of nodes. Finally, exp.run() is invoked to run
the experiment. After the experiment is complete, statistics
such as throughput, cwnd, RTT and others are provided to
the user as timestamped JSON dumps and plots.

2.3 Scope and Limitations
Scope. Currently, NeST supports the performance tests for
different congestion control algorithms and queue disciplines
(qdiscs). At the endpoints, it allows the user to configure
TCP congestion control algorithm (e.g., Reno, BBR), initial
congestion window (initcwnd) and other TCP parameters
that can be found in /proc/sys/net/ipv4/. Besides, NeST
allows the user to set link parameters such as bandwidth and
delay, and configure the qdisc at the intermediate nodes.
NeST internally uses netperf to generate network traffic,

and parses the statistics reported by it to plot goodput. It
uses ss to obtain socket statistics like the congestion win-
dow (cwnd), Round Trip Time (RTT), Slow Start Threshold
(ssthresh), per-flow throughput, pacing rate and delivery rate
of TCP flows. NeST uses tc to configure the bandwidth and
delay of the links, configure queuing disciplines, buffer sizes

and filters on router interfaces, and extract qdisc specific
statistics like queue length and queue delay.

Due to the modular architecture, it is relatively easy to in-
tegrate additional tools with NeST. This can be accomplished
by adding functions to run the low level, tool specific com-
mands in the Engine module, the required high level APIs to
use the tool in the Topology and Experiment modules.

Limitations. NeST does not use hardware NICs, so the re-
sults that are obtained from NeST do not show the effects of
hardware level optimizations that are done in modern NICs.
These optimizations include offloading certain tasks to the
NIC that are otherwise done at the software level. The lack
of hardware queues also prevents NeST from showing the
effects of Byte Queue Limit (BQL), a mechanism to limit the
size (in bytes) of the hardware transmission queues in a NIC.
Since NeST only uses the network stack provided by the

Linux kernel, it is currently not possible to emulate a test
environment that contains different implementations of net-
work stacks such as those in BSD,Windows or stacks that run
atop userspace packet processing libraries such as Netmap
[9] and Data Plane Development Kit (DPDK) [1]
NeST has limited support for debugging the test envi-

ronment, which includes checking link status using ping.
Interfaces to external tools such as tcpdump and traceroute
[6] shall be added in a future release.

3 VALIDATION
We perform two experiments using Flent to validate the
correctness of the results obtained from NeST. The first ex-
periment is performed on a simple topology configured in
a physical testbed and the second, on a complex topology
which is configured manually by using network namespaces.
For NeST, experiments are run on network namespaces only.

3.1 Experiment 1

Figure 2: Simple topology for NeST validation

The topology shown in Fig. 2 is setup in a physical testbed,
and in NeST. Flent’s tcp_4up test (4 TCP upload flows from
Node0 to Node1) is used to run the experiment on the physi-
cal testbed, and four flows with similar characteristics are
setup in NeST. CUBIC TCP [4], the default congestion con-
trol algorithm in Linux, is used for the experiments. The
router uses Controlled Delay (CoDel) [8] qdisc with a target
queue delay of 5ms, interval of 100ms and queue limit of
1000 packets. netem and htb are used for latency and band-
width management. The experiment is repeated by using
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(a) cwnd: Physical Testbed
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(b) cwnd: NeST
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Figure 3: Experiment 1 – Results with CoDel qdisc
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Figure 4: Experiment 1 – Results with FIFO qdisc

FIFO qdisc at the router. Figures 3 and 4 show that the re-
sults obtained from physical testbed and NeST correlate well.
The cwnd and throughput plots in Figures 3(a-d) and 4(a-d),
respectively, validate the functionality of NeST in terms of
endpoint behavior, and the link utilization and queue backlog
plots in Figures 3(e-f) and 4(e-f), respectively, validate the
functionality of NesT in terms of the network performance.
CoDel qdisc keeps the backlog under control (Fig. 3f) while
keeping the bottleneck bandwidth fully occupied (Fig. 3e),

whereas FIFO qdisc has a high backlog (Note, the range of
Y-axis is different for Fig. 3f and Fig. 4f) due to passive queue
management. When CoDel is used, the throughput obtained
for every flow is fair because CoDel has a better queue con-
trol, and avoids bulk packet losses due to congestion. FIFO,
on the other hand, has poor queue control and leads to bulk
packet losses when congestion occurs. This results in unfair
allocation of the bottleneck bandwidth among four flows. As
expected, the bottleneck link is fully utilized with FIFO qdisc.
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Figure 5: Complex topology for NeST validation
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Figure 6: Experiment 2 – Results with FQ-CoDel qdisc

3.2 Experiment 2
The complex topology [3] in Fig. 5 is manually setup by using
network namespaces and by using NeST. It comprises of 12
nodes and 5 routers, with all links connecting routers being
the bottleneck links. Every sender uses CUBIC TCP, and
the routers use Flow Queue CoDel (FQ-CoDel), the default
qdisc in Linux. CoDel’s configuration in FQ-CoDel is same as
described in Experiment 1. We run three flows from Node0

to Node6, Node1 to Node7, Node2 to Node8, six flows from
Node3 to Node9, Node4 to Node10 and two flows from Node5
to Node11 for 120 seconds. In Fig. 5, A(3) on Node0 and Node6
indicates that 3 TCP flows are run from Node0 to Node6.
Figure 6 shows the results for this experiment. Due to

limited space, we present the cwnd, throughput and RTT only
for flows A, because they traverse via multiple congested
routers. We present the link utilization for Router 0, 1 and 3
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to cover links of different bandwidth. Other results of this
experiment are available on the link given in the footnote.

These results validate the functionality of NeST in a com-
plex network setup with FQ-CoDel qdisc. This experiment
was run on a system having Arch Linux with kernel v5.6, In-
tel(R) Core(TM) i5-8265U CPU@ 1.60GHz, 4 cores (8 threads)
and 8 GB of RAM. The RAM utilization for 120 seconds of
the experiment with NeST was 3.12%, hence it does not have
high system requirements. NeST only logs all the commands
that are used to build the topology and does not interfere
with the experiments. During the experiment, the interme-
diate stats collected from network interfaces are stored in
RAM, and these stats are written onto a file only after the
entire experiment has completed. Hence, disk I/O is not a
limiting factor while running experiments with NeST.
The source code and the steps to reproduce both experi-

ments described in this section are openly available2. NeST
requires iproute2 and Python 3 packages to be pre-installed.

4 RELATEDWORK
Flent [5] provides pre-defined tests, and simplifies the collec-
tion and analysis of data from the experiments. It can be used
with physical systems and network namespaces. It does not
provide tools to build a topology, hence requires a pre-setup
physical or virtual network topology. This is sufficient for
small scale testbeds or even medium sized testbeds with a
relatively simple configuration, but has limited scalability
for experiments requiring large testbeds. NeST allows for
emulating large scale testbeds using network namespaces.
Netesto [2] is similar to Flent but has fewer number of

tests and provides less data on qdisc statistics. TEACUP [10]
on the other hand concentrates on testbed configuration
and data collections, but requires a physical topology setup
beforehand. Transperf3 is developed by Google specifically
for testing transport protocol performance. It expects a pre-
setup topology with physical systems (multi-server mode)
but handles creation of network namespaces when run in
single server mode. However, it offers very little flexibility
in terms of the testbed configuration.

Mininet [7] provides an API and a command line interface
to create and manage a network of virtual hosts, switches,
controllers and links. But Mininet provides limited options
with respect to qdisc configuration on hosts. Running ex-
perimental tests using Mininet will either need additional
configuration to use a testing tool or the user may have to
run complex commands (to setup flows, collect stats, etc.) in
the Mininet script which could become tedious.
Initially, we attempted to build a wrapper for Flent and

incorporate topology setup using network namespaces. But

2https://gitlab.com/nitk-nest/nest-anrw20
3https://github.com/google/transperf/

Flent is designed to run from a single node or controller in a
network, and uses SSH to control and get statistics from re-
mote machines. Using SSH to communicate between names-
paces is an overhead. Although it can be achieved with minor
tweaks, testing many-to-many flows and collecting statistics
is a difficult process with Flent. Moreover, Flent comes with
a set of pre-configured tests, most of which can be given test
parameters to vary the number of flows, target hosts, etc,
but running any custom designed test requires adding a new
test configuration. Mininet, on the other hand, provides nice
APIs for setting up topology using network namespaces, but
lacks support for advanced tc, which is very important for
our use cases. Since NeST uses components of iproute2 for
collecting statistics and advanced tc, it’s more efficient to set
up network namespaces using iproute2 than using Mininet.

5 CONCLUSIONS AND FUTUREWORK
In this paper, we proposed NeST, a python package to sim-
plify the process of performing experimental evaluations of
congestion control algorithms and queue disciplines, and
ensure reproducibility. NeST allows users to easily setup and
configure scalable testbeds, and run tests in a single python
script. We plan to enhance the capabilities of NeST in future
by providing additional intuitive APIs to make the process
of integrating other tools simpler, and adding features like
automatic routing, support for experiments other than TCP
and qdiscs, support for a hybrid (namespace-physical system)
configuration, a GUI extension for interactive plotting and
an extensive debugging support via tools like tcpdump.
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