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ABSTRACT

Although Resource Public Key Infrastructure (RPKI) is criti-
cal for securing the inter-domain routing, one of the argu-
ments hindering its adoption is the significant power that it
provides to the Regional Internet Registries (RIRs), allowing
prefix takedowns. In this work, we propose a small change
to RPKI to distribute the power of RIRs preventing any sin-
gle one of them from taking down a prefix. We design and
implement a distributed RPKI system that relies on threshold
signatures. This ensures that any change to the RPKI certifi-
cates requires a joint action by a number of RIRs, avoiding
unilateral IP address takedowns. We evaluate the perfor-
mance of our design and use historic RPKI data to analyse
its performance and efficiency.

CCS CONCEPTS

« Networks — Routing protocols; « Security and pri-
vacy — Privacy-preserving protocols.
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1 INTRODUCTION

Resource Public Key Infrastructure (RPKI) [17] secures the
interdomain routing against prefix and subprefix hijacks and
is a prerequisite for path-end validation [5]. RPKI binds the
IP address blocks with its Autonomous Systems (ASes) via
cryptographic signatures, stored in Route Origin Authoriza-
tions (ROAs). ASes then apply Route Origin Validation (ROV)
to identify and discard BGP announcements that contradict
the information in ROAs. This enables to filter misconfigured
as well as malicious announcements attempting to hijack
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prefixes. Commonly, ROAs are maintained in repositories
operated by the five Regional Internet Registries (RIRs): RIPE
NCC, LACNIC, ARIN, APNIC, AFRINIC 1.

Despite the significant benefits of RPKI, its deployment is
progressing slowly [10, 13, 14]. One of the arguments against
deployment of RPKI is the exposure to IP prefix takedowns
by forcing RIRs to modify information in the ROAs [6]. Acci-
dental or deliberate changes to the RPKI can cause a prefix of
the affected AS to become unreachable for ASes that enforce
ROV. RIRs in RPKI have the power to revoke and change any
certificate that they have issued and, thus, invalidating BGP
routes to the affected AS.

These concerns are not unfounded. In 2011, the Dutch
police ordered RIPE NCC—the RIR for Europe, the Middle
East and parts of Central Asia—to lock registration of four
IP address blocks [24]. Although RIPE NCC took the State
of Netherlands to court over this order, their case was dis-
missed [23] and registrations were locked down. In another
case, a court in the United States of America issued a writ
of attachment on the country-level top-level domain of Iran,
Syria and North Korea and the associated IP addresses [15].
Such demands from the court are possible due to the central-
ization of power and the hierarchical structure of systems.

In this work, we replace the trust that the ASes have to
place in individual RIRs with a mechanism that limits the
power of RIRs. We devise a solution based on threshold sig-
natures which limits access to the key material of RPKI and
uses multi-party computation (MPC) for signing and revok-
ing resource objects. In Section 2 we compare our proposal
to previous research and show why MPC is the most suitable
tool for achieving our goal. Our proposal addresses three
issues: (1) prevents IP address takedowns, (2) limits the scope
and implications of attacks on RIRs, and (3) enables valida-
tion in case of missing trust anchor. Our proposal is easy to
deploy and does not require changes to BGP and RPKI.

The threat model. RPKI uses hierarchical and central-
ized authorities who are trusted. That is, attacks against
RPKI authorities, malfunction or malicious intent of RPKI
authorities and coercion by law enforcement officials are
not part of the threat model. A corrupt authority can revoke
certificates and ROAs that it has issued.Such a system creates
an imbalance of power between the RPKI authorities and
organizations lower in the hierarchy. This power imbalance
is unlike the distributed nature of BGP. Moreover, the power
imbalance with RPKI is greater than Web PKI as only the

1Although ASes can host their ROAs themselves, it uncommon.
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specific RPKI authorities can issue certificates to its children
in RPKI while in a Web PKI the child has the possibility to
request certificates from any of the other CAs.

Furthermore, although the Internet cuts across national
boundaries, the design of RPKI opens up the possibility for
state actors to perform legalized coarse-grained censorship
as court orders are not part of the threat model of RPKI.
In fact, RIRs have been presented with court orders in the
past [19, 24]. For the purpose of accountability, all the RIRs
present numbers on the number of law enforcement requests
they receive in a year [20]. The RIRs are bound by the law
of the state they are based in, e.g., Dutch law for RIPE NCC
and US law for ARIN. However, the members of the RIRs are
in numerous countries. What recourse does a member have
if it has been affected by a mistake or an attack by the RIR?

RPKI infrastructure was designed because ASes could not
be trusted and there were many cases of fat-finger mistakes
and attacks that made routing insecure. Nevertheless, RPKI
replaces the trust placed on ASes with trust placed on RPKI
authorities. Just as ASes couldn’t be trusted, what if the trust
placed in RPKI authorities is also misplaced?

Threshold signatures for RPKI. We propose a distributed
RPKI system that has threshold signatures at its foundation.
Threshold signature is a cryptographic technique where a set
of n parties jointly compute a signature on a message such
that at least a threshold ¢ + 1 parties, with t < n, are required
to participate. This technique distributes the signing pro-
cess and is more robust to adversarial attacks or corruptions
without changing the original verification procedure of the
signature scheme. That is, a threshold signature protocol
generates signatures that can be verified as if it were gener-
ated using the traditional variant of the signature scheme.
Threshold signatures are a specific instance of MPC where
signatures are generated in a system with untrusted par-
ties. One such scenario is RPKI, which can benefit from the
distribution of trust that threshold signature offers.

RIRs offer hosted RPKI service to their members to improve
the deployment of RPKI; RIRs host a CA that can be used by
its members to issue ROAs. This service makes it convenient
for the members of RIRs to use RPKI without the overhead of
managing a CA. However, this convenience comes at the cost
of further centralization of power as the RIRs also handle
the private keys used to sign ROAs.

On the brighter side, this is the kind of scenario where
threshold signatures are not only suitable for distribution
of trust, but they are also efficient. Threshold signatures are
efficient when the number of parties involved is small. There
are five RIRs, in different continents, making it suitable to
run a distributed RPKI system between them with threshold
signature as the engine driving it. As RIRs are at the first
level of the RPKI hierarchy, each of them are in a powerful
position where they can revoke ROAs of a large subset of the
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IP-address space. However, RIRs do not usually collude with
each other, and often disagree with each other when it comes
to their response to law enforcement agencies [19]. Hence,
a system that requires a threshold of them to agree makes
it harder for any one RIR to act maliciously or be coerced
by a state as it is beyond its capability to unilaterally make
changes. Our solution not only distributes trust, it also cuts
across national legislations.

Our solution can be described as follows: threshold sig-
natures use shares of the private key, where each of the
five RIRs will have a share of the private key while none
of them have the entire private key. Using only the shares,
the RIRs can collaboratively, but not unilaterally, sign ROAs
and Certificate Revocation Lists (CRLs). Most importantly,
threshold signatures support a stronger threat model where
corrupted RPKI authorities are not entirely trusted and yet
play a significant role in making BGP secure.

2 RELATED WORK

One approach that has been proposed to address the issue of
disproportionate power in the hands of RPKI authorities is
to add transparency logs and . dead objects to RPKI to note
the consent of the Internet Number Resource (INR) owner
for revocation [12, 18]. [12] use a detector to identify when
a ROA has downgraded from valid to invalid or valid to
unknown state and check whether a . dead object is present.
Three problems with their approach: (1) It requires effort
not only from the CAs but also from relying parties. This
method depends on relying parties to perform ROV and
to alarm other relying parties. In practice, only about 100
ASes perform ROV as can be observed at ROV deployment
monitor %, a monitoring platform [22], while there are 68289
ASes as of 1 April 2020 3. (2) It performs detection while
we attempt to prevent malicious activities. Attacks can be
detected after the fact due to the transparency and the effort
of the relying parties. Accountability in the form of malicious
activity detected post-mortem is not sufficient as ASes may
have already lost out on their business. (3) These .dead
objects are used to signify consent from the child and they
are to be signed by the child node. In the hosted RPKI setting,
as the parent manages signing for the child node, the parent
can create and sign . dead objects by impersonating the child.

Another approach is to replace the existing RPKI system
by using blockchains [11]. This approach eliminates the pos-
sibility of RPKI authorities revoking previously allocated
resource while they remain part of the blockchain by pro-
viding new resources. The use of blockchain raises other
deployment issues such as consensus algorithm and incen-
tive for the nodes to run the blockchain. If Proof-of-Stake is
used as the consensus algorithm, as proposed in [21], then

Zhttps://rov.rpki.net
Shttps://www.caida.org/data/as- relationships/
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the nodes with greater stake, e.g., large providers who are
allocated large subsets of IP addresses will become powerful
players, which will create another form of power imbalance.
As blockchain-based proposals suffer from scalability issues,
RouteChain [25] employs a hierarchy of ASes which are as-
signed in subgroups to validate BGP announcements on the
blockchain. However, in practice, ASes may have conflict-
ing policies that prevent dynamic grouping and, thus, an
incentive mechanism is also required.

3 DISTRIBUTED RPKI
3.1 System and Threat Model

In this section, we state the threat model of existing RPKI
before introducing the threat model in our system. We intro-
duce different threat models from MPC literature that our
solution supports along with the motivation behind each of
them. Then, we introduce the system and communication
model we use in our work.

3.1.1  Threat Model. In our distributed RPKI (DRPKI) sys-
tem, we consider a stronger threat model than the existing
RPKI system. The existing threat model of RPKI does not
consider a malicious RIR. In this work, in addition to the
threats considered in the existing system, we do not consider
the RIRs to be entirely trustworthy. We distribute trust so
that individual RIRs do not need to be completely trusted.
Standard MPC terminology provides us with a tool kit to
discuss threat models that not only includes external adver-
saries but also the participating parties. As there are five RIRs,
we consider n = 5 for threshold signatures. We consider two
scenarios: one where a majority of RIRs are corrupted and
another where a minority are corrupted by an adversary.
Although the minimum is to prevent unilateral power of in-
dividual RIRs, we assume a stronger threat model to prevent
colluding RIRs from breaking the security of the system.
The adversary can be passive or active. A passive adver-
sary follows the protocol while an active adversary can be-
have arbitrarily. Security against passive adversaries is suffi-
cient if the goal is to secure signing keys against internal and
external adversaries while trusting the RIRs with operational
integrity. When the operational integrity of the RIRs is not
guaranteed, security against active adversaries is required.

3.1.2  System and Communication Model. Our system incor-
porates all parts of the RPKI that requires generating signa-
tures, which includes the creation of signed objects, ROAs,
as well as signing of the resource certificates of children and
the issuance of CRLs. Unlike traditional RPKI, we propose
a DRPKI using MPC such that a ROA cannot be signed by
a single RIRs on its own. Our system focuses on the role of
RIRs as CAs in RPKI, specifically in the hosted RPKI setting
where the RIR that allocates IP resources also runs the CA to
validate the ROAs. We focus on the key generation and the
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Figure 1: Distributed RPKI architecture

signing operation in a distributed RPKI system, such that no
RIR has access to the signing key. RIRs have access only to
parts of the signing key (known as key shares) and not to
the signing key. Thus, RIRs cannot unilaterally sign ROAs of
ASes or revoke the associated end-entity certificate.

We inherit the communication model from the underlying
MPC protocols. More specifically, we assume the existence of
synchronous communication network where the protocol is
executed in rounds [3, 16]. The communication between the
RIRs is implemented and run on a point-to-point network.
We assume that the RIRs securely communicate with each
other using a TLS connection with authenticated endpoints.

3.2 System Setup

We present the system architecture in this section. Each RIR
has has two components: Trust anchor and Hosted RPKIL
Each RIR has a CA and a threshold signature module. RIR
CA is the top-level CA that acts as a trust anchor in the RPKI.
RIR CA issues the CA certificates to its members and issues
manifests and CRLs for the members. In addition, it also
issues a self-signed certificate for itself and a certificate for
the Hosted CA. Hosted CA is responsible to produce signed
objects: ROAs, CRL and manifests for the members. It is
available to all members of the RIR who choose to use Hosted
RPKI. The public key and the share of the private key of the
members is stored at the hosted CA. All the certificates and
the signed objects issued by the two CAs are published in
public access repositories, through rsync or RRDP [2].
Unlike existing RPKI, our system requires interaction be-
tween the RIRs for the creation of certificates and signed
objects (Figure 1). RIRs are in different continents and the
communication takes place over the public internet using
secure and authenticated channels. At a high-level, each RIR
has a share of a private key for each member and uses this
share to collaboratively issue signed objects. None of the
RIRs get to access the entire private key. They use the shares
of the private keys to create signed objects. We note that solu-
tions we present in this paper are in the security-with-abort
model, that is, the protocols abort when participants are not
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Key generation KGen(1%)

(1) Each RIR takes a security parameter 1* as the
input and generates a signing key share for the
j*" member by randomly sampling [sk il — Z,.

(2) Each RIR locally converts [sk;] to [sk;] - G.

(3) RIRs compute the public key
pk; = Open([sk;] - G)) = sk; - G.

(4) Output the secret key shares and the public key
(Isk;], pk,).

Figure 2: Key generation protocol

available. However, it is possible to design threshold signa-
ture protocols that can function when a subset of parties are
unavailable, albeit with modified design parameters.

3.3 DRPKI protocol phases

All phases instigated by a CA and the interaction takes place
between the threshold signing modules. MPC adds compu-
tation and communication overhead to traditional signing
and, hence, we require a protocol that is efficient when the
signing is to be performed. Protocols in the preprocessing
model generated message independent material apriori and
require little computation and communication to complete
the signing when the message to be signed is available. Fur-
thermore, most threshold signature protocols only satisfy
some of the threat models we consider in our system. As
we want to be able to consider the efficiency of our system
under all the threat models we discussed in Section 3.1.1, we
chose to use the protocol of Dalskov et. al. [8], which is the
most efficient protocol that fulfils all our requirements. We

describe the protocols in Figures 2 and 3.
Automation. All the steps in our system are automated and

does not require human intervention at the RIRs. Note that
Step 4 of Online signing phase in Figure 3 requires checking
the message before the message is signed. We automate this
step through a simple consent mechanism during Step 1. For
example, if the customer (AS1) of RIPE-NCC is transferring
an IP-space to AS2, then AS1 gives consent to revoke the old
ROA and to issue the new ROA pointing to AS2. This consent
is sent to all RIRs (instead of only to one RIR) from the
customer facing software *. Hence, all RIRs are informed of
the intent of AS1. When the RIRs run the threshold signature
protocol, there is an automatic check for consent. If there is
no consent, then the protocol aborts.

3.4 Deployment scenarios

In this part, we propose different deployment models. We
present two solutions with their associated trade-offs among
the stake holders. We emphasise that the trade-offs are not
with respect to the security, but with respect to the responsi-
bilities of the different stake holders.

4We need a standalone software to send the consent to all RIRs.

Signing Protocol
Member Independent preprocessing

(1) RIRs generate tuples of secret shared values of the
form ([a], [b], [c]) such that a,b,c € Z, where
¢ =ab.

(2) They open the share [c] by running
¢ « Open([c]).

(3) Let [k7!] = [a].

(4) Each RIR locally generates (k) = ([b] - G) - c™".

(5) Output the initial preprocessing tuple
(Ck), [K'D).

Member Dependent preprocessing

(1) RIRs input the generated signing key shares [sk;]
and the initial preprocessing tuple ({k), [k™1]).

(2) They compute [sk}] = [sk;/k] by generating an
additional tuple and Beaver’s rerandomization
technique [1].

(3) Output  the final
(Ck), [K7'1, [sk}).

Online signing phase

preprocessing  tuple

(1) The member uses a standalone application to give
consent, e.g., to transfer IP-space to another AS.
The consent is sent to all the RIRs.

(2) Input the message to be signed M and the final
preprocessed tuple (¢(k), [k™1], [sk;])

(3) The RIR initiating the protocol sends the message
M to the other RIRs.

(4) The RIRs check the contents of M and the consent
by the member before proceeding. If the check
fails, they abort L. Else, they continue.

(5) Then the RIRs compute
R «— Open({(k)) = (bc™})-G=al-G=k-G.

(6) Let (ry,1y) < R.

(7) Locally compute the share of the signature
[s] = H(M) - [k71] +rx - [skj].

(8) Finally compute the signature s < Open([s])
and output 0 = (ry,s) or o = L.

Figure 3: Signing Protocol

Our solutions: Both our solutions distribute the trust
anchor (TA). Before discussing our solutions, we give an
intuition behind our choice to distribute RPKI trust anchor.
The notion of a TA requires all child nodes to unconditionally
trust an entity. In RPKI, there are five TAs, one at each RIR,
which the relying parties use to verify RPKI signatures. The
concentration of power at TAs in the Internet infrastructure
extends beyond RPKI and is also observable in DNS(SEC)
and Web PKI. However, unlike DNS and Web PKI, there are
already five TAs in RPKI that allows for a smooth transition
to a distributed TA. Furthermore, the existing system of five
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TAs has had its issues. As the policies of each RIR with re-
gards to TA is different, some relying parties do not use the
TA of ARIN and ROAs issued under ARIN’s trust anchor lo-
cator (TAL) fall to the status of ‘Not Found’ [26]. This means
that even when RPKI is implemented, a significant portion of
the networks do not validate routes originating from North
America due to policy decisions and legal barriers [4, 27].
Thus, in practise large parts of the world are prevented from
having better routing security. These issues can be prevented
if the TA is not located at individual RIRs with their own
policies and is instead distributed across them.

Two-layered deployment: In our first solution, we pro-
pose a two-layered approach. The upper layer generates a
distributed TA to the five RIRs, while the lower layer uses the
threshold signing module for the Hosted CAs. In both layers,
the RIRs use our threshold signing module. In the upper layer,
a distributed TA is established using our key generation pro-
tocol in Figure 2. Each RIR generates their signing key share
and participates in the key generation protocol to obtain the
public key. Once the public key is obtained, each RIR adds the
public key to their TAL as the subjectPublicKeyInfo [7].
Each RIR has a TA that has the same public key in the TAL.
As no RIR has the private key associated with this certificate,
the RIR CAs do not need to be kept offline. Thus, the RIRs
do not need a subordinate CA to issue child certificates. Fur-
thermore, as each RIR has the same public key as part of the
TA and they have the same subjectPublicKeyInfo in their
TAL, access to the TAL from one RIR is sufficient for relying
parties to validate routes originating from any part of the
world that has deployed RPKIL

In the lower layer, our threshold signing module is used by
the hosted CAs to generate signed objects such as ROAs. We
are able to support delegated CAs as the distributed TA at the
RIR CAs is used to generate child certificates. Furthermore,
this solution allows for incremental deployment as the LIRs
who have already deployed their own CAs can continue to
use them to serve their child nodes while those who have
not deployed their own CAs can start using hosted CA. Note
that the concerns regarding some LIRs being coerced by their
country of registration remains.

Flat deployment: In our second solution, instead of hav-
ing the RIRs run two CAs, RIR CA and the hosted CA, we
combine the two so that the RIRs only need to run one CA.
Furthermore, we do not need a TA as we replace the top-
down architecture with a flat deployment architecture. Not
only do we eliminate the hierarchical structure of existing
RPKI, we also distribute trust. Moreover, this solution ac-
counts for a stronger threat model where individual RIRs do
not need to be completely trusted. However, we do not sup-
port delegated CAs in this solution. The CAs only generate
end-entity certificates and signed objects; they do not gener-
ate any CA certificate that will allow child nodes to generate
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Ad
L VErsary POWEr | Honest-but-curious Malicious
Majority
Honest Shamir Mal. Shamir
Dishonest Semi. OT MASCOT

Table 1: Four MPC protocols

their own signed objects. This also means that child nodes
will need the RIRs to generate signed objects for their child
nodes. Nevertheless, we prevent any single entity to be all
powerful and require the participation of a threshold number
of RIRs for a signed object to be generated and ejected.

4 IMPLEMENTATION AND EVALUATION

We have implemented our system in C++ and have used MP-
SPDZ [9] for the threshold ECDSA MPC protocols. MP-SPDZ
includes threshold ECDSA protocol implementations for all
the security models that we are concerned with: honest-
but-curious and malicious as well as honest and dishonest
majority protocols. In particular, we use four protocols—
Shamir, Mal. Shamir, Semi. OT and MASCOT—that are shown
in Table 1. The former two are based on Shamir secret sharing
while the latter two are based on additive secret sharing. We
use all four protocols to implement our system.

4.1 Deployment Setups

For performance evaluation, two deployments were set up.
For each node, we used an Amazon AWS c5.2xlarge instance
with a 64-bit Intel Xeon CPU with 3 GHz and 16 GB RAM.
We ran all the evaluations on a single thread. To make our
evaluations as realistic as possible, we chose to run the exper-
iments based on the location of the RIRs. The five RIRs are
in different continents of the world. So, in the first setting,
we run experiments on five Amazon AWS instances that are
placed around the world such that they are representative of
the location of the RIRs. Specifically, we use the instances at
Frankfurt, N.Virginia, Sydney, Sao Paolo and Mumbai while
the RIRs are based in Amsterdam, Virginia, Brisbane, Sao
Paolo, Mauritius, respectively. Furthermore, we also consider
the setting where the RIRs could, in the future, have virtual
servers located close to other RIRs. For this purpose, we also
run our experiments on the LAN in Frankfurt.

4.2 Experimental evaluations

We benchmark the preprocessing time (member dependent
and independent) to generates tuples and the online signing
time per signature. As the preprocessing does not depend on
the message to be signed, thousands of preprocessed tuples
can be generated and stored. They can be used when a new
message is to be signed. Although dishonest majority proto-
cols are generally more costly than honest majority protocols,
Semi OT has the highest preprocessing throughput in LAN
setting (Table 2). Semi. OT protocol uses additive sharing
which is cheaper than elliptic curve operations, which is the
predominant cost during preprocessing. In the WAN setting,
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Figure 4: Number of ROAs added and removed from March 2015 to February 2020
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Preprocessing  Online ‘ Preprocessing  Online
MASCOT 209 529 20 0.95
Semi OT 1042 662 111 2.05
Mal. Shamir 699 714 91 3.53
Shamir 1020 769 265 3.54

Table 2: Breakdown of throughput for preprocessing
(tuples/sec) and online phases (signatures/sec).

communication becomes more predominant than local oper-
ations. We also observe that the cost of malicious security in
the case of honest majority protocol is very small. This is es-
pecially true in the WAN setting as the extra checks for Mal.
Shamir are local operations while communication becomes
the predominant cost. The communication overhead is less
than a KByte for online signing phase. MASCOT and Semi.
OT require a communication of 624 KByte and 99 KByte
respectively for the preprocessing while Shamir and Mal.
Shamir require 0.437 KByte and 1.345 KByte respectively.

5 ANALYSIS

Our distributed RPKI system will need to generate numerous
signatures for it to be deployable. To understand how many
signatures are required if we are to deploy the system, we
use historical RPKI data.

RPKI data. Each RIR maintains an rsync repository with
RPKI data. We accessed the publicly available historical RPKI
data maintained by RIPE NCC that includes the daily archive
of the repositories of all the five RIRs °. We use the historical
data from 1 March 2015 till 19 February 2020 for our analysis.

ROA analysis. We use the RPKI data to analyse the changes,
specifically, the number of ROAs that have been added and
removed per day in the measured time period. This infor-
mation allows us to estimate the number of signatures that
are to be generated by our distributed RPKI system. Figure 4
shows the monthly change in ROAs for the five RIRs. On av-
erage, we need less than 20000 signatures per day. However,
there are exceptions, such as on 1 January 2020, when there

Shttps://ftp.ripe.net/rpki/

was a factor 10 increase change in the ROAs. We observe
from Table 2 that for our slowest protocol MASCOT, we are
able to produce 0.95 signatures/sec or 82080 signatures/day
in the WAN setting. For our fastest protocol, we are able to
produce 3.54 signatures/sec or 305856 signatures/day in the
WAN setting. Note that even our slowest protocol is able to
satisfy the requirements on an average day. On days with
peaks, our fastest protocols are able to satisfy the require-
ments. Moreover, the threshold ECDSA signature protocols
we use are the first to be designed in the preprocessing model
and there is room for optimizations that can assist further
in scaling our solution when the adoption of RPKI increases.
Note that, in the LAN setting, all our protocols are fast and
can produce two orders of magnitude more signatures.

6 CONCLUSION

Although RPKI offers significant security benefits, it exposes
the Internet to IP prefix takedown attacks. Although there
have been proposals to detect takedowns, detecting alone
does not eliminate the damage that is done to the affected AS
when it goes offline. Furthermore, proposals for detection of
such attacks assume that the ASes perform ROV—most of
which currently do not. Another problem with the existing
proposals is the need for changes to the existing BGP infras-
tructure. We propose a mechanism for preventing the prefix
takedown attacks, without requiring changes to the BGP or
RPKI. We implemented our proposal and demonstrate its
effectiveness and performance. We note that our solution
is purely technical, and legal and policy barriers need to be
addressed to make the work truly practical.
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