Applied Networking Research Workshop 2020

<>C<'> N <>0<><<>>
Internet O G GO

Society | %§_<><><_>I<_><><>F
R

)@ sigcomm

Enabling Privacy-Aware Zone Exchanges Among
Authoritative and Recursive DNS Servers

Nikos Kostopoulos, Dimitris Kalogeras and Vasilis Maglaris

NETwork Management & Optimal Design (NETMODE) Laboratory
School of Electrical & Computer Engineering
National Technical University of Athens (NTUA)




Motivation: DNS Water Torture Attacks
I

Recursive DNS Servers

Authoritative DNS Server
Attacker

1. Requests for invalid names: 2. These names will not be in the DNS
- www56.example.com caches of Recursive DNS Servers.
-astlkdhaksd.example.com All requests will reach the victim
-aaaaaaaa.example.com

= DDoS attacks can be mitigated more efficiently close to their origins

Our use case for DNS: Scrubbing services, Recursive DNS Server Filters

= However, AXFR requests are typically restricted for security reasons




Contribution

e
= A privacy-aware schema for the efficient distribution of Authoritative DNS
Server zones to Recursive DNS Servers or scrubbing services

= Design Requirements:
—> Privacy-aware zone distribution
—> Efficient zone mapping (storage, filtering latency, consumed bandwidth)
- Compatibility with the existing DNS infrastructure (AXFR, IXFR requests)
—> Support for incremental updates

= Relying on probabilistic data structures as datastores for valid Authoritative
DNS Server zone names. These fulfill the previous design requirements.

= Extending previous work (IEEE CloudNet 2019).
Bloom Filters were used to map the names of large DNS zones and filter
suspicious DNS traffic in cloud infrastructures
- In this paper, we implement the zone distribution mechanism
- Instead of Bloom Filters, we use Cuckoo Filters that support item deletion




Background: Bloom Filters
e

= Bitarrays (of m bits) used for
Approximate Membership Lookups:

Is element x stored in the Bloom Filter?
= All bits are initially set to O.
Each element is hashed with k different hash functions.

Corresponding positions (hash results mod m) are set to 1.

m bits

Bits may be shared
by multiple items

wordl word?2

False Negatives (Item in the filter, lookup says it is not): Impossible
False Positives (Item not in the filter, lookup says it is): Possible




Bloom Filter based Approaches for DNS
. |

= Related approaches:
- Mapping DNSSEC zone names to accelerate authenticated responses
- Logging DNS data
- Detecting botnet traffic
- Tracking newly observed domain names

Privacy-aware approaches, but deletions are not supported

Cuckoo Filters vs Bloom Filters:
— Cuckoo Filters are more time and space efficient

— Cuckoo Filters support element deletion




Background: Cuckoo Filters

I
*= Elements are inserted as fingerprints in entries of a 2D array

- Fingerprints of size f bits are calculated using the function fgp()

" Cuckoo Filters are characterized by:
- Number of available buckets m Partial-Key Cuckoo

- Fingerprint entries b per bucket Hashing Technique

= Each element x is assigned h(x) = hash(x)
a pair of buckets hy and hy: | h,(x) = h(x) ® hash(Ffgp(x))

= Example for m=4, b=2:

Inserting x’ fingerprint 2 times Inserting y’ fingerprint
h;(x) h,(x) h,(y) h,(y)
One of the two buckets is fgp(x) evicted to alternate bucket

randomly selected
x and y share a bucket

N




Baseline Design

Recursive DNS Server
(Recursor) Filters @
Filtering Module <

Filtering Module
(Incremental Updates)

Filtering Module @
" Privacy-Aware Zone Manager (Initialization)
v 4 v
Hashed DNS Zones Incremental DNS Zones
(HsZn’s) (IncZn’s)
=" Hashed DNS Zones Hashed Zone Hashed Zone Receftt .
Initialization @ Renewal %gg:ﬁzztmns

Privacy-Aware Zone Manager (PAZM)

- Zone Resource Recently Modified
Incremental DNS Zones Records (RR’s) List RR’s & Details
Plaintext DNS Zones (PItZn’s) Zone Updates Log
4 ®
Zone Updates Authoritative DNS
A O Server (AuthDNS)

Authoritative DNS Server Subscribed Devices
Administrator




Implementation: The Privacy-Aware Zone Manager
—y

Builds and maintains the Cuckoo Filters whose fingerprints are used to
create and revise the privacy-aware DNS zones

Actions:
e Retrieves Plaintext DNS Zone RR’s, hashes their FQDN into

fingerprints, creates Cuckoo Filters and the Hashed DNS Zones

e Retrieves Plaintext DNS Zone changes regularly, updates the in-memory
Cuckoo Filters and the Incremental DNS Zones

* Ignores RR’s whose value was updated, but their FQDN did not change

e Special treatment for RR’s that share FQDN’s with others, but differ in RR
type and/or value (usage of frequency counters)

- Implemented in Python 3

- Murmurhash3 for fingerprint and hash calculations




Implementation: Hashed DNS Zones (1)
e
These zones hold the FQDN'’s of the Plaintext DNS Zones
hashed and mapped in Cuckoo Filters (Use of AXFR)

Serialization format (zone hszn.tld):

1. ; Zone: hszn.tld

2: : Cuckoo Filter Parameters

3: buckets.hszn.tld IN TXT
4. entries.hszn.tld IN TXT
5. fgp-size.hszn.tld IN TXT
6: fgp-algo.hszn.tld IN TXT
7: hash-algo.hszn.tld IN TXT
8: : Cuckoo Filter Data

9: <n>hszn.tld IN TXT

Cuckoo Filter parameters & algorithms:

<m>

<b>

<f>
<Sgp()>
<hash()>

<RR Data>

- Number of buckets m, fingerprint size f, number of entries b

- Algorithms used for fingerprint and candidate buckets calculation




Implementation: Hashed DNS Zones (2)

e
Example for the 1%t data RR of the .ntua.gr Hashed DNS Zone

Cuckoo Filter with: (1, 14 IN  TXT "c64.1dd4d1d590bfbf3ddaa20
_ f=12 bit fingerprints 3f6cb764b2¢647a7063faff67fac8811df81c0fbe65£2.a5a.de2

_ bcd4666b6f10ba60e5cdc824ee3bal807bd26d08a3.745a2£8
- b=4 entries / bucket 9¢.395cbb723310f27e51c28ee3a96ad2¢788092d2514513.44

-82 fingerprints mapped §3b606€d33@(3570C€85C%_1f5&59€076@b11.@6664446
96504eb01d090cc0d445.3eb."

Rules:
e Equally sized fingerprints of [ f /4] Bytes (hex digits).

* Fingerprints requiring less than [f /4] Bytes are prepended with 0’s

 The fingerprints of multiple Cuckoo Filter buckets are mapped
sequentially within a single TXT type RR

* Buckets with vacant entries require a trailing dot as they do not
have explicit boundaries. Full buckets do not.




Implementation: Incremental DNS Zones
S
They map name changes of Plaintext DNS Zones (Use of IXFR)

Serialization format (zone inczn.tld):
1. : Zone: inczn.tld

2: : Zone Parameters

3: last-serial.inczn.tld IN TXT <serial>
4: sequence.inczn.tld IN TXT  <seq-no>
5: ; Updates

6: <n>inczn.tld IN TXT "<fgp> <action> <h;>,<hy>"

Rules:
* Jast-serial: Changes prior to this value are incorporated in the

Hashed DNS Zones. Starting point for Recursive DNS Servers to
begin retrieving data from an Incremental DNS Zone

 sequence: Defines if a Hashed DNS Zone is stale and must be
downloaded again, e.g. when Cuckoo Filter parameters change

 Updates: The fingerprint of the name that changed, action (name




Evaluation: Testbed & Dataset

Testbed:
- Authoritative DNS Server: VM with 2 vCPUs, 16 GB RAM
- DNS Software: BIND9

Available DNS Zones:

- .ntua.gr: 8,294 distinct FQDN'’s
- .su: 109,719 distinct FQDN'’s

- .se: 1,387,690 distinct FQDN'’s
- .ru: 5,325,231 distinct FQDN'’s




Hashed DNS Zones Privacy-Awareness

Cuckoo Filters store names hashed, but attackers may attempt to gain
insight into zone contents by performing brute force attacks

Target: Assess the capabilities of Cuckoo Filters to withstand
brute force attacks in the context of DNS

Evaluation of True Positives (TP’s) and False Positives (FP’s) looking up
all permitted name combinations with 15t [abel length of 3-7 chars

1st Label Length TP’s FP’s FP’s/TP’s i
(Characters) (FODN’s) | (FODN’s) | (Ratio) Zone: ntua.gr
; 320 57 018 | - FPratio: 0.3%
! 640 1,789 2.80
5 1,178 68,296 57.98 - 37 possible characters
7 1,363 93,665,989 | 68,720.46

- FQDN'’s with 15t label longer than 5 chars protected with high certainty
- Longer 1% labels result into more False Positives




Hashed DNS Zones Serialization

Target: Determine the applicability of diverse data serialization
formats for mapping zone names into Hashed DNS Zones

Considered serialization formats:
- Cuckoo Filter with multiple buckets mapped within each RR

- Cuckoo Filter with a single bucket mapped within each RR
- Bloom Filter with multiple Bytes mapped within each RR

Bandwidth consumption during an AXFR request:

Indicative Zone Information Serialization Format Cuckoo Filters
(Distinct FQDN’s) Cuckoo Filter Cuckoo Filter Bloom Filter (Actual Size)
(Multiple Buckets / RR) (Single Bucket/ RR) | (Multiple Bytes / RR)
ntua.gr (8,294) 26.77 KB 63.91 KB 41.86 KB 13.51 KB
su (109,719) 352.1 KB 876.1 KB 553.11 KB 178.58 KB
se (1,387,690) 4.36 MB 11.21 MB 6.86 MB 2.21 MB
ru (5,325,231) 16.78 MB 43.76 MB 26.34 MB 8.46 MB

The Cuckoo Filter with multiple buckets/RR format outperforms the others




Hashed DNS Zones Management

Target: Latency comparison of actions related to managing the
Hashed DNS Zones using both Bloom Filters and Cuckoo Filters

Actions:

- Initial creation of the Hashed DNS Zones in memory (.ru zone)
- Updating the data structures (1,000 deletions, 1,000 insertions)

Data Structure Updates F m Bloom Filter

Data Structure Creation h M Cuckoo Filter

0 20 40 60 80
Time (seconds)

Bloom Filters are created faster than Cuckoo Filters due to the element
eviction process of Cuckoo Filter insertions (single time action)

Cuckoo Filters rapidly incorporate changes (Bloom Filters are rebuilt)




Conclusion & Future Work
[ N

Our approach is promising for distributing Authoritative DNS Server
zone names efficiently, while preserving privacy

Future Work:

" |nvestigate recently proposed probabilistic data structures,
e.g. Morton Filters, Xor Filters and Vacuum Filters

= Employ data plane programming to protect the open channel used
for relaying zone exchanges (XDP)

= Adapt solution to the mitigation of amplification NXNSAttacks

= Develop a Distributed and Federated Learning detection
mechanism that will reduce our zone sizes by excluding
infrequently requested names




Enabling Privacy-Aware Zone Exchanges Among
Authoritative and Recursive DNS Servers

Open-Sourced Code:
https://github.com/nkostopoulos/dnspriv

Contact Details: nkostopoulos@netmode.ntua.gr

-
L ?
a

THANK YOU!




