Encryption without Centralization: Distributing DNS Queries Across Recursive Resolvers

Austin Hounsel, Paul Schmitt, Kevin Borgolte*, Nick Feamster†

Princeton University, Ruhr-University Bochum*, University of Chicago†
Contributions

• We present the design and prototype implementation of a refactored stub resolver architecture that allows for de-centralized encrypted DNS resolution

• We perform a preliminary evaluation of the stub resolver’s performance

• We also utilize a real-world dataset to evaluate how query distribution strategies affect the queries seen by recursive resolvers
DNS Privacy Has Become a Significant Concern

• On-path network observers can infer website you are visiting
 • Governments, coffee shops, etc.

• Two protocols have been proposed to encrypt DNS traffic
 • DNS-over-TLS (DoT)
 • DNS-over-HTTPS (DoH)
Firefox continues push to bring DNS over HTTPS by default for US users

Selena Deckelmann | February 25, 2020

Today, Firefox began the rollout of encrypted DNS over HTTPS (DoH) by default for US-based users. The rollout will continue over the next few weeks to confirm no major issues are discovered as this new protocol is enabled for Firefox’s US-based users.
Research Questions

1. Is de-centralization worth doing?

2. This paper: If so, how could it be technically possible/feasible?
 What forms could decentralization take?
 If it’s not technically feasible, then it’s not even worth debating about whether it’s worth doing!
Re-Decentralizing Encrypted DNS: Technical Architecture

1. The stub resolver discovers resolvers that support DoH, along with characteristics of those resolvers (e.g., geographic location)
2. The user articulates requirements (e.g., a preference to avoid a specific location or ISP)
3. The stub selects a set of DoH resolvers by matching characteristics with preferences
4. The stub distributes queries across multiple DoH resolvers according to some user-specified strategy

Cloudflare

Google

Quad9

Stub Resolver

1. example.com
2. images.example.com
3. nytimes.com
4. nytimes.com
5. washingtonpost.com

ahounsel@cs.princeton.edu
Prototype Implementation

• Fork of open-source encrypted DNS proxy dnscrypt-proxy [1]
• Supports hash, round-robin, and random query distribution
• Can run on host devices and routers

[1] https://github.com/noise-lab/ddns
Query Distribution: Hashing

1. example.com
2. images.example.com
3. nytimes.com
4. nytimes.com
5. washingtonpost.com

Stub Resolver

Cloudflare

Google

Quad9
Query Distribution: Round-Robin

1. example.com
2. images.example.com
3. nytimes.com
4. nytimes.com
5. washingtonpost.com

Stub Resolver

Cloudflare
Google
Quad9
Query Distribution: Random

1. example.com
2. nytimes.com
3. images.example.com
4. washingtonpost.com
5. nytimes.com

Stub Resolver

Cloudflare

Google

Quad9

ahounsel@cs.princeton.edu
Evaluation Questions

• Performance
 • CDN localization
 • Page load times

• Privacy
 • # of domain names seen by resolvers
Effect on CDN Localization

![Graph showing the effect on CDN localization. The x-axis represents latency to resolved web server (TCP + SSL) in milliseconds, and the y-axis represents the CDF. The graph compares different resolver-CDN host pairs, such as Google - Cloudflare, Cloudflare - Cloudflare, and Google - Google.]
Effect on Page Load Times

![Bar charts showing the effect of different DNS providers and configurations on page load times in different locations.](ahounsel.cs.princeton.edu)
Effect on Domain Names Seen By Resolvers

(a) Hash distribution on second-level domain names

(b) Round-robin distribution
Summary

• We present the design and prototype implementation of a refactored stub resolver architecture that allows for de-centralized encrypted DNS resolution

• We perform a preliminary evaluation of the stub resolver’s performance

• We also utilize a real-world dataset to evaluate how query distribution strategies affect the volume of queries seen by recursive resolvers
Thank you!

Contact: Austin Hounsel
ahounsel@cs.princeton.edu