
Priority-aware Forward Error Correction for HTTP
Nooshin Eghbal
University of Alberta
Edmonton, Canada
eghbal@ualberta.ca

Paul Lu
University of Alberta
Edmonton, Canada
paullu@ualberta.ca

ABSTRACT
TCP has been replaced by QUIC in the latest version of HTTP
(i.e., HTTP/3) to reduce the Head-Of-Line (HOL) blocking
problem. Also, there have been improvements to HTTP’s
priority mechanism for Web resources, beyond the existing
tree-based one, to improve page-load times. We propose that
Forward Error Correction (FEC) for selected, high-priority
resources, can be (re-)introduced to HTTP to further reduce
HOL blocking effects and improve page-load times, while
maintaining reasonable overheads. A prototype and experi-
ment are discussed.

CCS CONCEPTS
• Networks→ Network protocol design.

KEYWORDS
HTTP, QUIC, Forward Error Correction (FEC), HTTP
ACM Reference Format:
Nooshin Eghbal and Paul Lu. 2022. Priority-aware Forward Error
Correction for HTTP. In Applied Networking Research Workshop
(ANRW ’22), July 25–29, 2022, PHILADELPHIA, PA, USA. ACM, New
York, NY, USA, 3 pages. https://doi.org/10.1145/3547115.3547195

1 INTRODUCTION
The Transmission Control Protocol (TCP) guarantees the
in-order delivery of a stream of bytes. Therefore, all of the
data after a lost packet are blocked until the retransmission
of the lost packet is received. This is the known as the Head-
Of-Line (HOL) blocking problem.
HTTP/1.1 and HTTP/2 both use TCP. As a result, they

suffer from TCP’s HOL blocking problem, which contributes
to increased page-load times in the case of packet loss. The
latest version of HTTP (i.e., HTTP/3) was developed to solve
Permission to make digital or hard copies of all or part of this work for
personal or classroom use is granted without fee provided that copies are not
made or distributed for profit or commercial advantage and that copies bear
this notice and the full citation on the first page. Copyrights for components
of this work owned by others than ACMmust be honored. Abstracting with
credit is permitted. To copy otherwise, or republish, to post on servers or to
redistribute to lists, requires prior specific permission and/or a fee. Request
permissions from permissions@acm.org.
ANRW ’22, July 25–29, 2022, PHILADELPHIA, PA, USA
© 2022 Association for Computing Machinery.
ACM ISBN 978-1-4503-9444-4/22/07. . . $15.00
https://doi.org/10.1145/3547115.3547195

this problem by running over a reliable UDP-based multi-
plexed protocol called QUIC [8].

QUIC supports multi-streaming which means the data can
be sent over independent streams so a packet loss in any of
the streams would not block the data on other streams. This
is useful for HTTP resources that can be processed incre-
mentally such as images. However, QUIC still suffers from
intra-stream HOL blocking. In other words, QUIC delivers
data within each stream with total ordering but there is no
ordering between the data sent over different streams.

Loading Web pages requires downloading different types
of resources, such as HTML, JavaScript (JS), Cascading Style
Sheet (CSS), and image files. Whereas image files can be ren-
dered incrementally, JS and CSS need to be fully downloaded
to be useful [9]. Therefore, HTTP prioritization and resource
scheduling between the client and the server can minimize
the page-load time.
In HTTP/2, the server builds a dependency tree to know

the relative priority between requests [15]. However, this
tree-based approach is complicated and difficult to use for
both browsers and servers. Recently, the more practical Ex-
tensible Prioritization Scheme [11] has been proposed. In this
approach, the priority of each HTTP response is set by the
client to an absolute value between 0 and 7, in descending
order of priority. Also, there is an incremental parameter for
each request, that can be set to let the server know that the re-
source data can be sent incrementally using multi-streaming.
Knowing the priority of the requested resources at the

server, we propose that Forward Error Correction (FEC) can
be used only for the resourceswith higher priority, especially
the non-incremental ones (e.g., JS and CSS). Without FEC, a
lost packet will still cause extra latency in page loading, as
packets are retransmitted. Other low-priority resources that
can be applied/rendered incrementally, like image files, can
still take advantage of multiplexing/multi-streaming over
QUIC. And only high-priority resources incur the overheads
of FEC, while improving latency.

Notably, we are proposing a selective, priority-aware use
of FEC for HTTP. In the first version of QUIC by Google [13],
FEC was a built-in option. However, FEC was dropped from
QUIC due to the overhead and negative experimental re-
sults [7]. Other studies considered FEC over QUIC, but for
all resources [10], [4], [12]. However, with the Extensible
Prioritization Scheme, it may be time to reconsider FEC.

https://doi.org/10.1145/3547115.3547195
https://doi.org/10.1145/3547115.3547195

ANRW ’22, July 25–29, 2022, PHILADELPHIA, PA, USA Eghbal, et al.

High priority resources

Low priority/incremental resources

35 35 35 35 35

70 70 70 70 70

7 kB data message

FEC message

ms0 13 63
54

Without FEC

With FEC

0 10 28 ms

Figure 1: The arrival order of messages w/o FEC over UDT.

2 UDT AND 2D XOR FEC
As a proof of concept, we have implemented FEC over UDP-
based Data Transfer (UDT) [5] with a two-dimensional XOR-
based (2D XOR) FEC. Both UDT and QUIC are UDP-based,
and FEC over QUIC would be the next step in our work.
UDT is a user-level, reliable protocol designed for large

data transfers over Wide-area Networks (WANs). Multiple
Congestion Control Algorithms (CCA) are supported by
UDT, including a non-loss-based CCA called UDPBlast. With
UDPBlast, there is a fixed sending rate that will not change,
even with packet loss. Evaluating our priority-aware FEC
for HTTP with a loss-based CCA remains as a future work.

UDT has two modes: 1) streammode and 2) message mode.
The stream mode is like TCP and supports total ordering
only but in the message mode we can set an order flag for
each message to be delivered in total order or arrival order.
For this work, we ran the experiments in message mode with
arrival order delivery to avoid HOL blocking problem in the
case of packet loss to get close to QUIC.
The original UDT source code does not include any FEC

implementation. We have implemented an XOR-based FEC
called 2DXOR inside UDT [1] and used it for our experiments
in this paper. In 2D XOR FEC method, we build 2D matrices
of the original packets and send the XOR of all rows and all
columns as redundant packets to the destination.
The interesting thing about 2D XOR FEC is that we can

recover burst packet loss patterns with the help of column
recovery while in 1D XOR FEC we can recover only one
packet loss in each row [2][3]. The other advantage of 2D
XOR FEC is that it is still simple and would have low com-
putational overhead. In our implementation of 2D XOR over
UDT, the user needs to set the number of rows and columns.

3 PRELIMINARY RESULTS
We evaluate the idea of using FEC only for high-priority
resources through a simple workload using our 2D XOR FEC
implementation over UDT in an emulated testbed. We use
the Netem-tc Linux tool [6] to set the loss rate to 2% and

RTT to 50 ms between two nodes in Emulab testbed [14].
Each node has one 3 GHz 64-bit Xeon processor and are
networked with 1 Gbps Ethernet.
In our synthetic workload, we have 5 high-priority re-

sources each 35 kB (e.g., JS and CSS) and 5 low priority
resources each 70 kB (e.g., images) that need to be sent to the
client. In Figure 1, the UDT message size is 7 kB. Therefore,
each resource is fragmented into multiple messages (e.g.,
each high-priority resource is sent using 5 messages and
each low priority resource is sent using 10 messages).
We consider two scenarios: 1) Not using FEC at all, and

2) using 2D XOR FEC only for the 5 high-priority resources.
We set the size of the 2D matrix for the second scenario to
5*5 to include the messages of all 5 high-priority resources
(i.e., 25 messages in total). In Figure 1, we show the order
in which we receive messages for both scenarios. Note that
“With FEC”, the red high-priority resource arrives and is
recovered (using FEC) by time 10 ms. “Without FEC”, the red
resource arrives much later at 54 ms, after a retransmission.
Furthermore, “With FEC” all 5 high-priority messages arrive
or are recovered after 28 ms. “Without FEC”, we need to wait
for an RTT (i.e., 50 ms) to receive the retransmission of a lost
message of the golden resource, and it takes 63 ms to receive
all 5 high-priority resources.

4 CONCLUDING REMARKS
Page-load delays hurt the user experience on the Web, and
the consequences of packet loss for HOL blocking continue to
plague HTTP such that HTTP/3 has switched to using QUIC
instead of TCP. Without a priority mechanism in HTTP,
FEC did not necessarily make sense due to the overheads
of using FEC for all resources. However, since HTTP now
has a priority mechanism, a priority-aware FEC for HTTP
can make reasonable trade-offs between overheads and page-
load latency. Our experiments with FEC over UDT provide
evidence for these benefits. Implementing FEC over QUIC
remains as future work.

Priority-aware Forward Error Correction for HTTP ANRW ’22, July 25–29, 2022, PHILADELPHIA, PA, USA

REFERENCES
[1] Nooshin Eghbal and Paul Lu. 2021. Low-Variance Latency Through

Forward Error Correction on Wide-Area Networks. In 2021 IEEE 46th
Conference on Local Computer Networks (LCN). IEEE, 90–98.

[2] Simone Ferlin, Stepan Kucera, Holger Claussen, and Özgü Alay. 2018.
Mptcp meets fec: Supporting latency-sensitive applications over het-
erogeneous networks. IEEE/ACM Transactions on Networking 26, 5
(2018), 2005–2018.

[3] Tobias Flach, N Dukkipati, Y Cheng, and B Raghavan. 2013. Tcp instant
recovery: Incorporating forward error correction in tcp. Working Draft,
IETF Secretariat, Internet-Draft draft-flach-tcpm-fec-00, July (2013).

[4] Pablo Garrido, Isabel Sanchez, Simone Ferlin, Ramon Aguero, and
Ozgu Alay. 2019. rQUIC: Integrating FEC with QUIC for robust wire-
less communications. In 2019 IEEE Global Communications Conference
(GLOBECOM). IEEE, 1–7.

[5] Yunhong Gu and Robert L Grossman. 2007. UDT: UDP-based data
transfer for high-speed wide area networks. Computer Networks 51, 7
(2007), 1777–1799.

[6] Stephen Hemminger et al. 2005. Network emulation with NetEm. In
Linux conf au, Vol. 5. Citeseer, 2005.

[7] Arash Molavi Kakhki, Samuel Jero, David Choffnes, Cristina Nita-
Rotaru, and Alan Mislove. 2017. Taking a long look at QUIC: an ap-
proach for rigorous evaluation of rapidly evolving transport protocols.
In Proceedings of the 2017 Internet Measurement Conference. 290–303.

[8] AdamLangley, Alistair Riddoch, AlyssaWilk, Antonio Vicente, Charles
Krasic, Dan Zhang, Fan Yang, Fedor Kouranov, Ian Swett, Janardhan

Iyengar, et al. 2017. The quic transport protocol: Design and internet-
scale deployment. In Proceedings of the conference of the ACM special
interest group on data communication. 183–196.

[9] Robin Marx, Tom De Decker, Peter Quax, and Wim Lamotte. 2019. Of
the Utmost Importance: Resource Prioritization in HTTP/3 over QUIC..
In WEBIST. 130–143.

[10] François Michel, Quentin De Coninck, and Olivier Bonaventure. 2019.
QUIC-FEC: Bringing the benefits of Forward Erasure Correction to
QUIC. In 2019 IFIP Networking Conference (IFIP Networking). IEEE, 1–9.

[11] Kazuho Oku and Lucas Pardue. 2020. Extensible prioritization scheme
for http. Work in Progress, Internet-Draft, draft-ietfhttpbis-priority-02 1
(2020).

[12] V. Roca, F. Michel, I. Swett, and M. Montpetit. 2019. Sliding Win-
dow Random Linear Code (RLC) Forward Erasure Correction (FEC)
Schemes for QUIC. draft-roca-nwcrg-rlc-fec-scheme-for-quic-02 (2019).

[13] Ian Swett Ryan Hamilton, Janardhan Iyengar and Alyssa Wilk. 2016.
QUIC: A UDP-Based Secure and Reliable Transport for HTTP/2.
Internet-Draft draft-hamilton-early-deployment-quic-00 (2016).

[14] Brian White, Jay Lepreau, Leigh Stoller, Robert Ricci, Shashi Gu-
ruprasad, Mac Newbold, Mike Hibler, Chad Barb, and Abhijeet Joglekar.
2002. An integrated experimental environment for distributed systems
and networks. ACM SIGOPS Operating Systems Review 36, SI (2002),
255–270.

[15] Maarten Wijnants, Robin Marx, Peter Quax, and Wim Lamotte. 2018.
HTTP/2 prioritization and its impact on web performance. In Proceed-
ings of the 2018 World Wide Web Conference. 1755–1764.

	Abstract
	1 Introduction
	2 UDT and 2D XOR FEC
	3 Preliminary Results
	4 Concluding Remarks
	References

