
It's Not Where You Are, It's Where You Are Registered IoT Location Impact on MUD

IP-based Location Impact the IoT Network Behavior

User-defined location Impact the IoT Network Behavior

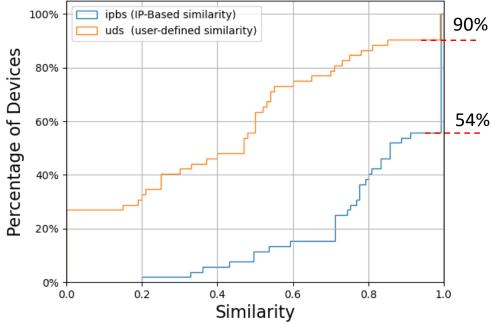
Motivations

Implication on:

- Network security framework (MUD RFC 8520)
- IoT Identification

→ Learning normal device behavior and then extracting rules and features is affected

Outline

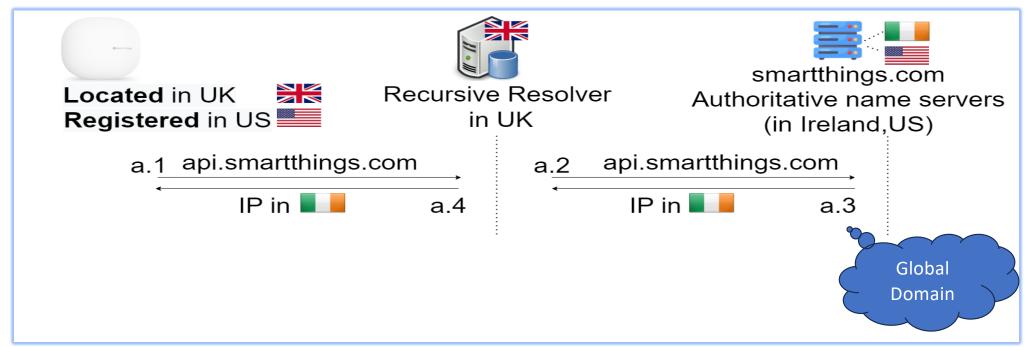

- IP-based location < user-defined location
- Common user-defined location implementation
- Background MUD IETF security framework
- The implication of user-defined location on the MUD
- Improving implementation using DNS ECS

Location Impact is Very Common

The similarity measure of two set of domains for the same device d, at location i and location j is defined:

$$uds(d, i\ell, u\ell, u\ell') = \frac{|\mathcal{D}(d, i\ell, u\ell) \cap \mathcal{D}(d, i\ell, u\ell')|}{|\mathcal{D}(d, i\ell, u\ell) \cup \mathcal{D}(d, \ell, u\ell')|}$$
$$ipbs(d, u\ell, i\ell, i\ell') = \frac{|\mathcal{D}(d, i\ell, u\ell) \cap \mathcal{D}(d, i\ell', u\ell)|}{|\mathcal{D}(d, i\ell, u\ell) \cup \mathcal{D}(d, i\ell', u\ell)|}$$

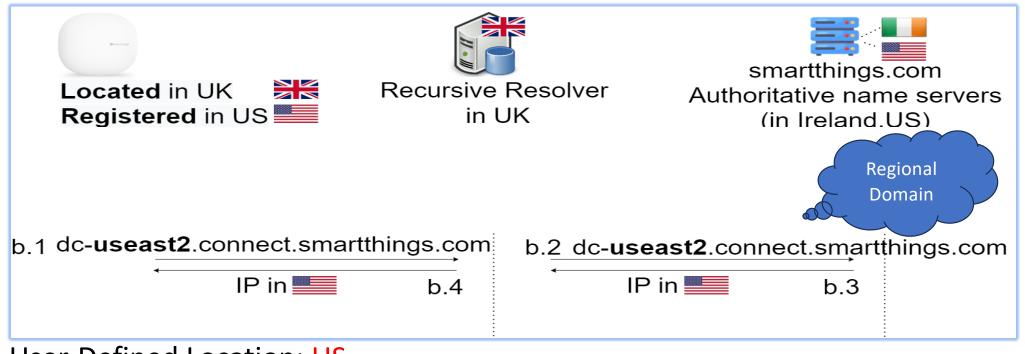
CDF of MUD similarity measure values



Why there is a difference in the domains?

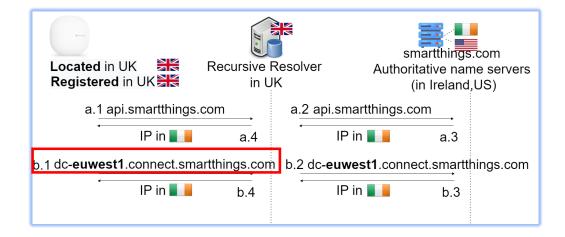
- Different domain names allow different features and servers
 - For example, a camera facial recognition feature is available only in China
- However, there are other ways to implement different IPs for the same domain, for example using IP-based location

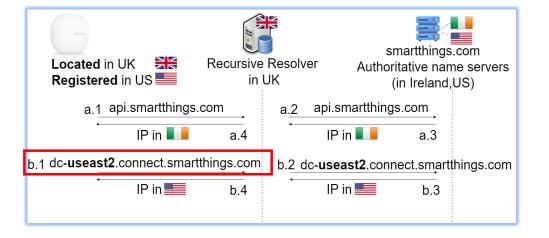
To allow USER-DECISION of location, the domain names must be different


IP-Based Location Decision: DNS

User-Defined Location: US

IP Location: UK


User-Defined Location Implementation



User-Defined Location: US

IP Location: UK

User-Defined Location Difference

User-Defined Location: UK

IP Location: UK

User-Defined Location: US IP Location: UK

Regional domain changes: dc-**euwest1/useast2**.connect.smarthings.com Global domain remains: api.smartthings.com

Correlation to Regions

United States -	1.0	0.33	0.33	0.33	0.33	0.0	0.5	0.5	0.5
Hong Kong-	0.33	1.0	1.0	0.33	0.33	0.5	0.0	0.0	0.0
Mexico -	0.33	1.0	1.0	0.33	0.33	0.5	0.0	0.0	0.0
Australia -	0.33	0.33	0.33	1.0	1.0	0.5	0.5	0.5	0.5
France -	0.33	0.33	0.33	1.0	1.0	0.5	0.5	0.5	0.5
India -	0.0	0.5	0.5	0.5	0.5	1.0	0.0	0.0	0.0
Russia -	0.5	0.0	0.0	0.5	0.5	0.0	1.0	1.0	1.0
United Kingdom -	0.5	0.0	0.0	0.5	0.5	0.0	1.0	1.0	1.0
Germany -	0.5	0.0	0.0	0.5	0.5	0.0	1.0	1.0	1.0
Germany - Un ^{ited E}	Hong	tong	PUS PUS	Italia Fr	ance	India P.	1.0 USSIA	don Gen	hany

Yi camera : similarity heat-map

Common case the differences in sub-domains

dc-euwest1.connect.smarthings.com user-defined location in the UK

dc-useast2.connect.smarthings.com user-defined location in the US

Only 9% of the domains present a difference in the Top-Level-Domain (TLD)

MUD Profile: network behavior formalization

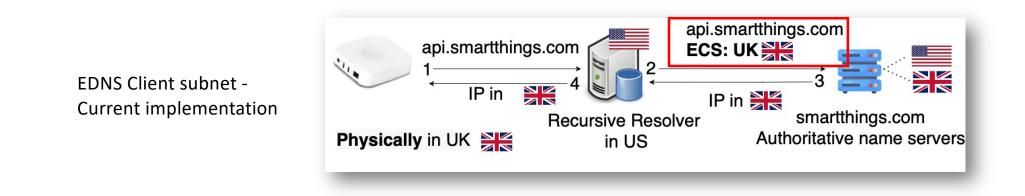
• IETF Standard, RFC 8520

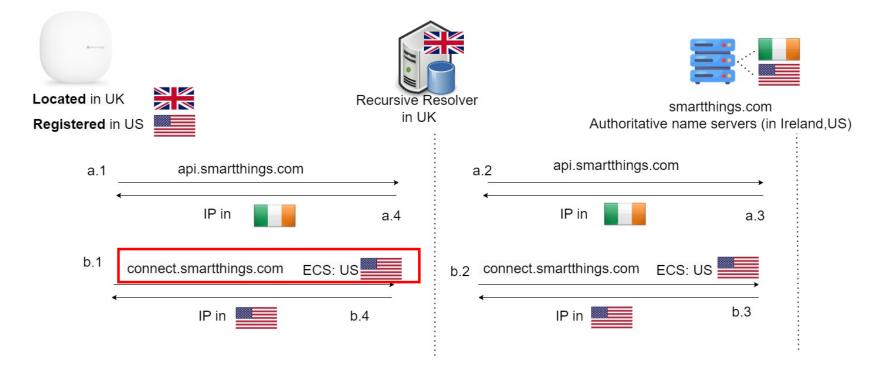
- MUD file is an Access Control List (ACL), a set of Access Control Entries(ACEs)
 - ACE = (Legitimate Endpoint, protocol, source port, destination port, direction)
 - Legitimate endpoint is usually a domain name (or IP ,MAC)
- Reduce attack surface
 - Allow-list IoT network behavior
 - Firewall allows only known network behavior

```
' "ace": [
    {
        "name": "from-ipv4-xiaomi-camera-Israel",
        "ipv4": {
            "protocol": 6,
            "ietf-acldns:dst-dnsname": "sg.ots.io.mi.com"
        },
        "tcp": {
            "destination-port": {
                "operator": "eq",
                "port": 443
        },
        "ietf-mud:direction-initiated": "from-device"
        }
      },
      {
        "actions": {
            "forwarding": "accept"
        }
      }
    }
}
```

MUD Implication

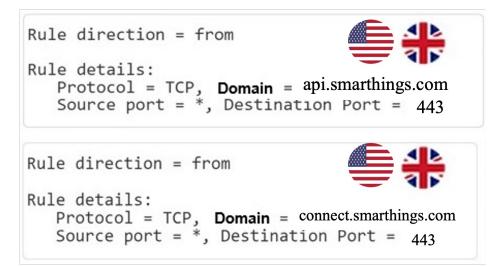
Rule direction = from Rule details: Protocol = TCP, Domain = api.smarthings.com Source port = *, Destination Port = 443


UK MUD file


- Learning phase MUD
- Single large MUD vs separate MUD files
- Explainability & Maintenance

Extension DNS: ECS (Client Subnet)

- When using an open resolver, in which the resolver location is different than the client location. ECS can carry the client's IP.
- ECS RFC allows the end-point device to send an ECS field.



Our proposal: using DNS ECS to carry the USER-DECISION

In our ECS-based user-defined location, the IoT device, and not the resolver, will add the ECS. Regional domains carry an ECS field while global domains do not.

MUD Using ECS

- Learning phase MUD easier
- Single MUD
- Explainability & Maintenance

Conclusion

User-defined location has an impact on IoT device network behavior

Dataset and security measurement should take location into account

User-defined can be implemented using the extension DNS

User-defined can be implemented using the extension DNU

For more information on our IoT research <u>http://www.deepness-lab.org/lotica</u>

Questions: <u>meyuhas.bar@post.idc.ac.il</u> <u>dhay@cs.huji.ac.il</u> <u>mrdaninos@gmail.com</u> <u>anatbr@tauex.tau.ac.il</u>

