It's the End of DRAM As We Know It

Philip Levis Stanford University IETF ANRW July 2023

Some Apologies

- I used to research networks
 - Low-power wireless: 802.15.4, LoRa
 - Internet of Things/sensor networks: CTP, LowPAN interoperability
 - IETF: RPL (RFC6550), Trickle (RFC6206), MRHOF (RFC6719)
 - Security: TLS-RaR
 - Congestion control: Pantheon (hi Francis!)
 - Video streaming: Puffer (hi Francis!)
- I haven't in a few years! So I don't have a lot to say about networks.
- I'm instead going to talk about a looming challenge for computing applications and systems. This will affect networks, what they can do, and how applications will use them. I think it's interesting. I hope you do too!

The Summary

- Processing and network speeds will continue to improve for a while
- RAM price (per bit) won't go down for at least 10 years, probably longer
- RAM performance (latency, throughput) is also flat
- This divergence means computers will be very different in 10 years
- And so will their applications

• It's the end of DRAM as we know it

Outline

- What's happening with scaling: \$/bit
- What's happening with signaling: latency and throughput
- Three kinds of memory
- A twist: Compute Express Link (CXL)

Outline

- What's happening with scaling: \$/bit
- What's happening with signaling: latency and throughput
- Three kinds of memory
- A twist: Compute Express Link (CXL)

DRAM Trends

Version	Year	Throughput	Latency	\$/GByte
DDR	1998	3.2GBps	I 34ns	\$78
DDR2	2003	8.5GBps	l 22ns	\$9
DDR3	2007	I7GBps	79 ns	\$3
DDR4	2014	26GBps	74ns	\$2
DDR5	2020	57GBps	72ns	\$3
DDR6	2025?	104?GBps	?	?

DRAM Trends

Version	Year	Throughput	Latency	\$/GByte
DDR	1998	3.2GBps	I 34ns	\$78
DDR2	2003	8.5GBps	l 22ns	\$9
DDR3	2007	I7GBps	79 ns	\$3 \
DDR4	2014	26GBps	74ns	\$2
DDR5	2020	57GBps	72ns	\$3 J
DDR6	2025?	104?GBps	?	?

Cost is flat

DRAM is a Transistor

End of Scaling

Marvell Investor Day 2020 presentation, slide 43

End of Scaling

- For a long time, smaller meant cheaper
- No longer
- We can continue to make smaller transistors for a little while, but transistor costs are flat

Marvell Investor Day 2020 presentation, slide 43

Process Node

Why?

Why?

28nm - 5nm

>28nm

It's Harder and Harder

Logic process steps

CMC Investors Presentation, 2021

In More Ways Than One

Allowable 20 nm particles/ml chemicals

CMC Investors Presentation, 2021

Lithography

https://www.newport.com/n/photolithography-overview

Patterning at < 28nm

 Lithography at < 28nm requires extreme ultraviolet (EUV) light (10-100nm wavelengths)

Patterning at < 28nm

- Lithography at < 28nm requires extreme ultraviolet (EUV) light (10-100nm wavelengths)
- Problem: glass, air, and almost everything absorb EUV
 - Have to operate in vacuum
 - No lenses
 - Mirrors

Generating EUV

- Prepulse (PP) hits tiny droplets of tin
- Droplets spreads into a disc
- Disc irradiated by main pulse (MP)
- Tin plasma produces 13.5nm light
- 50,000 droplets/second

EUV Lithography

- Took decades of research, tens of billions of dollars of research
- Many thought it was impossible
- "There is no plan B"
- We can continue to make smaller transistors, but the per-transistor manufacturing cost is flat

What About CPUs?

- Price per core is going down slightly
- Cores are getting faster (better accelerators, etc.)
- Design is a higher fraction of **CPU** costs
- You can use transistors more efficiently
- Chiplet designs are reducing design costs

Year	Processor	Cores	Transistors
2019	Rome	64	40T
2022	Milan	64	26T
2022	Genoa	96	90T
2024	Bergamo	128	82T

Cost	\$/core
\$6950	\$109
\$8800	\$138
\$10,625	\$110
\$11,900	\$92

Prices from http://en.wikipedia.com/wiki/Epyc

Price Per Bit

- The price per bit of DRAM is not going down soon
 - It's the cost of manufacturing transistors
 - Unlike CPUs, there isn't flexibility/design space
- Much cheaper RAM will require new materials
 - Nothing on the roadmap for anyone: don't expect anything in the next 10 years
 - Micron representative: "We've tried everything in the periodic table"
 - Optane was a 2x, but not good enough for the market now, it might return
 - Long shot: multi-layer DRAM, multiple transistors with one lithographic pass (like flash)
- Processors and networks still have some runway
 - NICs are a few nodes behind
 - Still a lot of room for acceleration in CPUs (e.g., Sapphire Rapids accelerators)

Outline

- What's happening with scaling: \$/bit
- What's happening with signaling: latency and throughput
- Three kinds of memory
- A twist: Compute Express Link (CXL)

DRAM Trends

Version	Year	Throughput	Latency	\$/GByte
DDR	1998	3.2GBps	I 34ns	\$78
DDR2	2003	8.5GBps	l 22ns	\$9
DDR3	2007	I7GBps	79 ns	\$3
DDR4	2014	26GBps	74ns	\$2
DDR5	2020	57GBps	72ns	\$3
DDR6	2025?	104?Gbps	?	?

DRAM Trends

Version	Year	Throughput	Latency	\$/GByte
DDR	1998	3.2GBps	I 34ns	\$78
DDR2	2003	8.5GBps	l 22ns	\$9
DDR3	2007	I7GBps	79 ns	\$3
DDR4	2014	26GBps	74ns	Latency is
DDR5	2020	57GBps	72ns	J \$3
DDR6	2025?	104?Gbps	?	?

flat

CPU Observed Latency

- Observed CPU latency is increasing
- Interconnect and coherence
- Bigger caches, fewer misses

СРИ	Arch	Cores	Latency
Xeon 8160T	Skylake	24	87 ns
Xeon 8272CL	Cascade Lake	26	I 24ns
Xeon 8370C	Ice Lake	32	I I 7ns
Xeon 8480	Sapphire Rapids	56	I 42ns

Data from https://chipsandcheese.com/memory-latency-data/

Sappire Rapids Die

Sappire Rapids Chip

GPIO	24x UPI	Accelerators: 16x PCIe5 or DSA 16x CXL 1.1 QAT DLB	16x PCIe5 or 16x CXL 1.1	24x UPI Accelerators: 16x PCIe5 or 16x CXL 1.1 16x PCIe5 or 16x CXL 1.1 0 QAT DLB 0 16x CXL 1.1 16x CXL 1.1 0 QAT DLB 0 0 0 0 0 CPU-Tile CPU-Tile CPU-Tile CPU-Tile CPU-Tile CPU-Tile
			GPU Tile	1875MB LLC 1875MB
128b D	1.875MB LLC Memory Control	GPU TILE GPU TILE		CPU TILE CPU TILE 1875MB LLC 1875MB LLC EMIB PHY EMIB PHY EMIB PHY EMIB PHY
DR5 PH	Tile CPU Tile		GPU Tile	
4	CPU TILE		CPU Tile	
	EMIE		B PHY	

DDR Throughput (per DIMM)

Version	Year	Throughput	Latency	\$/GByte
DDR	1998	3.2GBps	134 ns	\$78
DDR2	2003	8.5GBps	l 22ns	\$9
DDR3	2007	I7GBps	79 ns	\$3
DDR4	2014	26GBps	74ns	\$2
DDR5	2020	57GBps 🗲	72ns	\$3
DDR6	2025?	104?Gbps 🗲	?	?

∽7.2GT/s

-12.8GT/s

Signaling Limits

- DRAM data lines are single-ended
- Single-ended data lines have a signaling limit of ~9.6Gbps
- DDR6 tries to push this further by adding buffering (increases latency)

Signaling and Latency

- DDR latency is not going down
 - System memory latency is going up due to more complex caches
- DDR is reaching its signaling limits (9.6Gbps/pin)
 - Can maybe go to 12.8Gbps with buffering, increasing latency
- One possible escape hatch: go from single-ended to differential signaling
 - Completely new DRAM designs
 - No current JEDEC plans
 - Some historical concerns

It's the End of DRAM As We Know It

- Cost per bit of DRAM isn't going down in the medium term
- DRAM latency isn't going down either
- DRAM bandwidth doesn't have much room left
 - Unless next DDR uses differential signaling, this is >5 years out, so 8 years out before you can buy it

Outline

- What's happening with scaling: \$/bit
- What's happening with signaling: latency and throughput
- Three kinds of memory
- A twist: Compute Express Link (CXL)

Performance Diverges

- RAM capacity, latency, and throughput are flat
- Everything else continues to improve

NIC Speeds

- NIC speeds: 200G today, 400G soon
- At 400G, a 4kB packet is 80ns
 - Less than a single cache miss
- At 400G, a 64B packet is 1.25ns
- 400Gbit is 10% of server memory bandwidth
 - Echoing packets is 20% of bandwidth (write into RAM on reception, read from RAM for transmit)

5 2010 2015 2020

More Complex Pipelines: Netflix

- 4x memory amplification
 - DMA data from disk to memory
 - Read data from memory into CPU
 - Write encrypted data to memory
 - DMA data from memory to NIC
- What about more operations?
 - Compression
 - Serialization
 - Comment from engineer at Google: "We architect our pipeline so data enters the cache only once."

Accelerators

- Processors need to continue to improve performance and efficiency
- Answer: computational accelerators
- Intel Sapphire Rapids
 - DSA: Data Streaming Accelerator
 - QAT: Quick Assist Technology
 - AMX: Advanced Matrix Extensions
 - IAA: In-memory Analytics Accelerator

The Problem With Accelerators

- Performing a computation faster means it reads and writes memory faster
- In terms of silicon, computation is cheap and can be parallelized
 - E.g., GPUs, TPUs, other accelerators
- At some point you can't feed the accelerator fast enough: DDR doesn't have enough bandwidth

HBM: High Bandwidth Memory

- Basically, DDR with a lot more data lines
 - DDR5: 64 data line; HBM3: 1024 data lines (16 64-bit-wide channels)
 - Latency is higher: ~300ns
- Problem: you can't run 1024 copper data lines on a PCB
 - Thinnest traces are 0.152mm, 0.152mm x 1024 = 155.8mm with no spacing between them!
- Solution: do it in silicon, with an interposer
 - Think of it like a PCB done with silicon lithography
 - Have to package processor and memory
 - Expensive! And lots of failures

Coming to a CPU Near You

Intel[®] Xeon[®] CPU Max Series

Maximize bandwidth with the Intel[®] Xeon[®] CPU Max Series, the only x86-based processor with high-bandwidth memory (HBM). Architected to supercharge the Intel[®] Xeon[®] platform with HBM, Intel[®] Max Series CPUs deliver up to 4.8x better performance compared to competition on real-world workloads¹, such as modeling, artificial intelligence, deep learning, high performance computing (HPC) and data analytics.

Product brief: Intel[®] Xeon[®] CPU Max Series >

intel. Xeon

MAX SERIES

er Pricing in \$ US Illars	Intel ^o On Demand Capable	Die Chop
2,980		XCC
,590		XCC
,900		XCC
,750		XCC
,995		XCC

Memory Hierarchy

Capacity (bytes)

- 103
- **10**⁵
- 106
- 10⁸
- 1011
- 1012
- **10**13

Memory Hierarchy

Capacity (bytes)

- 103
- **10**⁵
- 106
- 10⁸
- 1011
- 1012
- 1013

Size: 100s GB Latency: 100ns Bandwidth: 50GB/s

Capacity: Flash

Size: 100s GB Latency: 100ns Bandwidth: 50GB/s

Size:TBs Latency: 100µs Bandwidth: 10s GB/s

Capacity: Flash

Size: 100s GB Latency: 100ns Bandwidth: 50GB/s

Latency: DDR

Bandwidth: HBM

Size:TBs

Latency: 100µs

Bandwidth: 10s GB/s

Size: 10s GB Latency: 300ns Bandwidth: 800GB/s

Future Computers

- They will have a mixture of memories: latency, capacity, and bandwidth
- Each memory is tied to a particular compute element
 - Disks/capacity: CPUs, or perhaps to the IPU/DPU
 - Latency: CPUs
 - Bandwidth: CPUs, TPUs, GPUs
- Networks are increasingly going to transmit data for bandwidth memory/ accelerated processing: input for models, etc.
- What does a networking stack look like when data can be loaded into a SmartNIC DRAM before offloading to a GPU's HBM?
- What happens when NICs need HBM?

Outline

- What's happening with scaling: \$/bit
- What's happening with signaling: latency and throughput
- Three kinds of memory
- A twist: Compute Express Link (CXL)

PCle is a problem

• High latency

- Minimum PCIe latency is ~800ns
- At 400Gbps, 800ns is 40kB
 - ➡ 27 1.5kB MTUs
 - ➡ 10 4kB MTUs (common in datacenters)
 - ➡ 5 8kB jumbo frames
- High throughput
 - 16 PCIe Gen5 lanes is 480Gbps
 - Overheads mean this isn't enough to drive 400Gbps; NVIDIA Bluefield 3 uses 32 Gen5 lanes

• Just a data bus

- Can read/write but memories on two sides of the bus are independent
- Checking if a NIC has a packet requires reading across bus

Compute Express Link (CXL)

- Replacement for PCle
 - Same physical layer, signaling, form factor, etc.: you can plug in a CXL or PCIe card, either/both will work
- Lower latency
 - Simplifies protocols to bring minimum latency down to 200ns
- Cache coherent
 - Allows two devices connected on the bus to use a MESI cache coherence protocol
 - A read from one device can be put in its cache, it can read it from the cache later
 - The other device, when it writes, invalidates the cache line

PCIe Example

CPU Memory

CXL Example

CXL Example

CXL Memory Devices

- CXL's lower latency means it can support *memory devices*
- Basically, away to get more memory bandwidth by using CXL lanes - AMD Genoa: 4.4 Tbps DDR bandwidth, 4.7 Tbps PCIe bandwidth
- There's a lot of buzz around this: you can in principle pool memory
 - A single CXL memory device is attached to multiple servers
 - Servers now have an elastic pool of memory, get closer to average use
- I'm skeptical
 - Latency is too high (400ns instead of 100ns)
 - Potential cost savings in RAM are less than the cost of a CXL memory pool device
- But, CXL is definitely going to change how we interact with the NIC

CXL Possibilities

- Cache coherence allows low-cost coordination between devices
 - Polling is very efficient
 - Need to batch updates to pay write cost
- A CPU can easily look into the memory of all of its peripherals
 - Use intrinsics/copies to move data between peripherals
- Move the CPU out of the data path
 - Transfer directly between devices

Computers in 10 Years

- They will look very different
- Three kinds of memory
 - Capacity
 - Bandwidth
 - Latency
- Cache-coherent interconnect (CXL)
 - Allows tighter integration of memory across devices
 - Applications will be higher bandwidth
 - Moving large-scale machine learning models

The Summary

- Processing and network speeds will continue to improve for a while
- RAM price (per bit) won't go down for at least 10 years, probably longer
- RAM performance (latency, throughput) is also flat
- This divergence means computers will be very different in 10 years
- And so will their applications

• It's the end of DRAM as we know it

Thank you!