
PINOT: Programmable
Infrastructure for Networking

Roman Beltiukov, Sanjay Chandrasekaran, Arpit Gupta, Walter Willinger

https://pinot.cs.ucsb.edu

(One of) academia’s problem: representative infrastructures

Typical Desired

Results: bad data ➔ bad solutions

(e.g., see “AI/ML for Network Security”, https://doi.org/10.1145/3548606.3560609)

Example platforms

- RIPE Atlas https://atlas.ripe.net
- COSMOS https://www.cosmos-lab.org
- Netrics https://github.com/internet-equity
- Measurement Lab https://www.measurementlab.net/tests
- Cloudlab https://www.cloudlab.us/
- Iris https://github.com/dioptra-io
- PerfSonar https://www.perfsonar.net
- EdgeNet https://www.edge-net.org/
- OneLab https://onelab.eu/
- EmuLab https://www.emulab.net/
- ...

They are great, but…

Some experiment are hard (or impossible) to implement, e.g.:

- YouTube Quality of Experience
- + Over Wi-Fi
- + In a live network with users
- + Over long time period
- + Flexible and programmable client
- + Separate backbone problems from last-mile problems

What infrastructure do we need for this?

Our solution: programmable infrastructure @ UCSB campus

Design principles

- Active + passive measurements
- Last-mile connection carrying real-world user traffic

- Balance between “unrealistic lab scenario” and “inaccessible production network”
- Mimics a typical enterprise network, 25k+ users
- Latency spikes, sudden user & traffic overloads, peak hours, etc

- Localized deployment (nodes are close geographically and logically)
- Support for arbitrary experiments (Docker-based)
- Direct and fast access for research iterations (fail-fast)

Additionally:

- Ethical: minimal disruption + preserve privacy
- Fully reproducible: cheap components + everything open sourced

Overall architecture

Campus

Data Center

Active measurements

60+ Raspberry Pi 4 devices (40 more in this month)

- Controlled by SaltStack
- Deployed in public places
- Use UCSB Wi-Fi infrastructure (and sometimes wired)
- Mimic real users

Raspberry Pi 4 + PoE + Ubuntu

Passive data collection

- Intel Tofino Switch for live traffic
mirroring

- ONTAS (P4) anonymization on
the switch

- Three servers for balancing data
collection

Active + Passive measurements benefits

You can implement and use together or separately

- Active measurements
- Full programmable control of clients
- Labelled data! :)

- Passive measurements
- Live real-world traffic
- Data diversity, time patterns, network events

- Active + Passive combination
- Multiple vantage points for packet observation
- Enrich labelled data with unlabelled (but similar) traffic

Current experiments examples

- Video Quality of Experience measurements (YouTube vs Twitch vs Vimeo)
- See motivation example

- Google Meet & Zoom QoE measurements
- Controlled speed tests (time, interface, location)
- Application traffic collection for fingerprinting
- Botnet imitation with network attacks :D

Limitations & Practical issues to be aware of

- Theoretical data guarantees are debatable
- Solution: measure, explore, and confirm

- Ethical Review is important and required
- Solution: do it before buying anything

- Official university services could be slow :)
- Solution: start early
- Solution: find students/personnel with direct access to buildings/services you need

- Chips/RPi/components shortage
- Solution: RPi-like boards + Armbian instead of Ubuntu

- RPi OS image security is important
- Solution: google “Linux hardening” and do it
- Exception: LUKS is slow ><

- We’ve created active+passive measurement platform @ UCSB
- Pretty unique active programmable measurements + concurrent passive live traces collection

- It has live user traffic (25k+ users)
- It is cheap and reproducible

- All hardware components are easy to buy
- All software components are open-source or publicly available
- See “Reproducibility” page of the website for all repos and information

- We invite other researchers to submit experiments
- pinot@cs.ucsb.edu

TL;DR:

https://pinot.cs.ucsb.edu

