Evaluating the Benefits: Quantifying the Effects of TCP Options, QUIC, and CDNs on Throughput

Simon Bauer, Patrick Sattler, Johannes Zirngibl
Christoph Schwarzenberg, Georg Carle

Monday 24th July, 2023
Introduction

Motivation

- Assessing and understanding connection and network performance is crucial
- Provider perspective: performance impacts user satisfaction
- Research perspective: assess the effectiveness of arising or widely deployed measures

Which impact have ...

- ... TCP options ...
- ... QUIC ...
- ... CDN hosting ...

... on the performance of Internet connections?
Introduction

Motivation

- Assessing and understanding connection and network performance is crucial
- Provider perspective: performance impacts user satisfaction
- Research perspective: assess the effectiveness of arising or widely deployed measures

Which impact have ...

- ... TCP options ...
- ... QUIC ...
- ... CDN hosting ...

... on the performance of Internet connections?
Related Work

- **1992**
 TCP window scaling (WS) [1]

- **1996**
 Selected acknowledgments (SACK) [2]

- **2001**
 Explicit congestion notifications (ECN) [3]

- **2004**
 7.44% of all SYN/(ACK)s advertise MSS, TS, SACK, and WS [4]

- **2005**
 Web server: 2.1% ECN capable, 68% SACK capable [5]

- **2013**
 Alexa Top 1M: 88.22% WS, 89.06% SACK, 29.48% ECN [6]

- **2019**
 ECN deployed by the majority of Alexa Top 1M domains (74.62% IPv4, 94.12% IPv6) [7]

- **2021**
 Ongoing growth of infrastructure by hypergiants [8]

- **2021**
 QUIC [9]–[11]

- **2022**
 W3Techs: QUIC accounted for 8% of the global Internet traffic [12]
Related Work

1992 • TCP window scaling (WS) [1]
1996 • Selected acknowledgments (SACK) [2]
2001 • Explicit congestion notifications (ECN) [3]
2004 • 7.44% of all SYN(ACK)s advertise MSS, TS, SACK, and WS [4]
2005 • Web server: 2.1% ECN capable, 68% SACK capable [5]
2013 • Alexa Top 1M: 88.22% WS, 89.06% SACK, 29.48% ECN [6]
2019 • ECN deployed by the majority of Alexa Top 1M domains (74.62% IPv4, 94.12% IPv6) [7]
2021 • Ongoing growth of infrastructure by hypergiants [8]
2021 • QUIC [9]–[11]
2022 • W3Techs: QUIC accounted for 8% of the global Internet traffic [12]
Related Work

1992 • TCP window scaling (WS) [1]
1996 • Selected acknowledgments (SACK) [2]
2001 • Explicit congestion notifications (ECN) [3]
2004 • 7.44% of all SYN(ACK)s advertise MSS, TS, SACK, and WS [4]
2005 • Web server: 2.1% ECN capable, 68% SACK capable [5]
2013 • Alexa Top 1M: 88.22% WS, 89.06% SACK, 29.48% ECN [6]
2019 • ECN deployed by the majority of Alexa Top 1M domains (74.62% IPv4, 94.12% IPv6) [7]
2021 • Ongoing growth of infrastructure by hypergiants [8]
2021 • QUIC [9]–[11]
2022 • W3Techs: QUIC accounted for 8% of the global Internet traffic [12]
Measurement Approach

1. Determining measurement targets
2. Conducting Measurements
3. Traffic analysis

Crawling

Downlaoding

PCAP analysis
Measurement Approach

1. Determining measurement targets
 - Public web servers as crawling targets
 - Recursively crawl all links of a website
 - Minimum file size of 1 MB
 - Consider different CDN providers
 - Domain-Org. mapping: IP → AS → Org. [13]

2. Conducting Measurements

3. Traffic analysis

Simon Bauer — Quantifying the Effects of TCP Options, QUIC, and CDNs on Throughput
Measurement Approach

1. Determining measurement targets
 - Public web servers as crawling targets
 - Recursively crawl all links of a website
 - Minimum file size of 1 MB
 - Consider different CDN providers
 - Domain-Org. mapping: IP \rightarrow AS \rightarrow Org. [13]

2. Conducting Measurements

3. Traffic analysis

PCAP analysis
Measurement Approach

1. Determining measurement targets

2. Conducting Measurements
 - Run downloads with different **TCP options**
 - SACK, ECN, WS
 - ... and with different **QUIC implementations**
 - quiche, aioquic
 - Vantage points: MUC, SFO, SGP

3. Traffic analysis

Simon Bauer — Quantifying the Effects of TCP Options, QUIC, and CDNs on Throughput
Measurement Approach

1. Determining measurement targets

2. Conducting Measurements
 - Run downloads with different TCP options
 - SACK, ECN, WS
 - ... and with different QUIC implementations
 - quiche, aioquic
 - Vantage points: MUC, SFO, SGP

3. Traffic analysis

Simon Bauer — Quantifying the Effects of TCP Options, QUIC, and CDNs on Throughput
Measurement Approach

1. Determining measurement targets

2. Conducting Measurements
 - Run downloads with different TCP options
 - SACK, ECN, WS
 - ... and with different QUIC implementations
 - quiche, aioquic
 - Vantage points: MUC, SFO, SGP

3. Traffic analysis

PCAP analysis
1. Determining measurement targets

2. Conducting Measurements

3. Traffic analysis
 - Capture download traffic
 - Extract packet features and performance indicators
Measurement Approach

1. Determining measurement targets
2. Conducting Measurements
3. Traffic analysis

Extension: Warm-up runs
- First download per run: baseline configuration
 - Bias in comparison to following DLs due to edge caching
- This presentation: results with warm-up run

Crawling

- file?
- file.size
- crawled.csv
- domain x org. mapping
- target_set.csv

Downloadig

- GET /file, SACK = 0, ECN = 0, WS = 0
- GET /file, SACK = 1, ECN = 1, WS = 14

PCAP analysis

Simon Bauer — Quantifying the Effects of TCP Options, QUIC, and CDNs on Throughput
Target selection

TCP target set

- Crawl the top 100K Alexa Top 1M entries
- Selected 2000 domains (200 per CDN, 1000 from other ASes)

QUIC target set

- Top 100K entries of Google's CrUX dataset
- Scanned for QUIC support with QScanner [14]
- Crawling & filtering domains for option support

Three measurement runs per target for both target sets

<table>
<thead>
<tr>
<th>Run</th>
<th>Total</th>
<th>Akamai</th>
<th>Amazon</th>
<th>Cloudflare</th>
<th>Google</th>
<th>Microsoft</th>
<th>Others</th>
</tr>
</thead>
<tbody>
<tr>
<td>TCP</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>MUC</td>
<td>1679</td>
<td>167</td>
<td>150</td>
<td>170</td>
<td>147</td>
<td>172</td>
<td>873</td>
</tr>
<tr>
<td>SFO</td>
<td>1678</td>
<td>165</td>
<td>147</td>
<td>168</td>
<td>152</td>
<td>173</td>
<td>873</td>
</tr>
<tr>
<td>SGP</td>
<td>1640</td>
<td>162</td>
<td>147</td>
<td>163</td>
<td>143</td>
<td>166</td>
<td>859</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Run</th>
<th>Total</th>
<th>Akamai</th>
<th>Amazon</th>
<th>Cloudflare</th>
<th>Google</th>
<th>Microsoft</th>
<th>Others</th>
</tr>
</thead>
<tbody>
<tr>
<td>QUIC</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>MUC_Q</td>
<td>511</td>
<td>3</td>
<td>15</td>
<td>289</td>
<td>2</td>
<td>0</td>
<td>202</td>
</tr>
<tr>
<td>SFO_Q</td>
<td>506</td>
<td>3</td>
<td>14</td>
<td>285</td>
<td>2</td>
<td>0</td>
<td>202</td>
</tr>
<tr>
<td>SGP_Q</td>
<td>495</td>
<td>3</td>
<td>13</td>
<td>276</td>
<td>2</td>
<td>0</td>
<td>201</td>
</tr>
</tbody>
</table>

Measurements: July 2023
Target selection

TCP target set

- Crawl the top 100K Alexa Top 1M entries
- Selected 2000 domains
 (200 per CDN, 1000 from other ASes)

QUIC target set

- Top 100K entries of Google’s CrUX dataset
- Scanned for QUIC support with QScanner [14]
- Crawling & filtering domains for option support

Three measurement runs per target for both target sets

<table>
<thead>
<tr>
<th>Run</th>
<th>Total</th>
<th>Akamai</th>
<th>Amazon</th>
<th>Cloudflare</th>
<th>Google</th>
<th>Microsoft</th>
<th>Others</th>
</tr>
</thead>
<tbody>
<tr>
<td>TCP</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>MUC</td>
<td>1679</td>
<td>167</td>
<td>150</td>
<td>170</td>
<td>147</td>
<td>172</td>
<td>873</td>
</tr>
<tr>
<td>SFO</td>
<td>1678</td>
<td>165</td>
<td>147</td>
<td>168</td>
<td>152</td>
<td>173</td>
<td>873</td>
</tr>
<tr>
<td>SGP</td>
<td>1640</td>
<td>162</td>
<td>147</td>
<td>163</td>
<td>143</td>
<td>166</td>
<td>859</td>
</tr>
</tbody>
</table>

| QUIC |
MUC_Q	511	3	15	289	2	0	202
SFO_Q	506	3	14	285	2	0	202
SGP_Q	495	3	13	276	2	0	201

Measurements: July 2023
How does TCP option usage impact performance?

- Baseline exceeds warm-up run, indicates impact by edge caching
- SACK and ECN results close to baseline
- WS significantly increases observed mean throughput
- All options slightly increase throughput compared to WS only
How does TCP option usage impact performance?

- Baseline exceeds warm-up run, indicates impact by edge caching
- SACK and ECN results close to baseline
- WS significantly increases observed mean throughput
- All options slightly increase throughput compared to WS only
How does TCP option usage impact performance?

- Baseline exceeds warm-up run, indicates impact by edge caching
- SACK and ECN results close to baseline
- WS significantly increases observed mean throughput
- All options slightly increase throughput compared to WS only
How does TCP option usage impact performance?

- Baseline exceeds warm-up run, indicates impact by edge caching
- SACK and ECN results close to baseline
 - WS significantly increases observed mean throughput
 - All options slightly increase throughput compared to WS only
How does TCP option usage impact performance?

- Baseline exceeds warm-up run, indicates impact by edge caching
- SACK and ECN results close to baseline
- WS significantly increases observed mean throughput
- All options slightly increase throughput compared to WS only
How does TCP option usage impact performance?

- Baseline exceeds warm-up run, indicates impact by edge caching
- SACK and ECN results close to baseline
- WS significantly increases observed mean throughput
- All options slightly increase throughput compared to WS only
How significant are speed-ups between downloads of one measurement run?

- For each download run: \(\text{Config}.\text{MeanTP} \geq x \times \text{Baseline}.\text{MeanTP} \) & \(\text{Config}.\text{MeanTP} < y \times \text{Baseline}.\text{MeanTP} \)
- Results merged for all VPs
 - SACK and ECN results comparable to baseline, only small shares of samples show speed-ups \(\geq 30\% \)
 - WS implies increased throughput for over 90% of samples
 - WS doubles mean TP for nearly 40% of samples, over 60% show a speed up larger 50%

<table>
<thead>
<tr>
<th>TCP options</th>
<th>Warm-up BL</th>
<th>ECN BL</th>
<th>SACK BL</th>
<th>WS BL</th>
<th>ALL BL</th>
</tr>
</thead>
<tbody>
<tr>
<td>Config vs.</td>
<td>+</td>
<td>-</td>
<td>0.7 - 0.9</td>
<td>0.9 - 1.0</td>
<td>1.0 - 1.1</td>
</tr>
<tr>
<td>Warm-up BL</td>
<td>35.4%</td>
<td>64.6%</td>
<td>12.1%</td>
<td>37.1%</td>
<td>25.9%</td>
</tr>
<tr>
<td>ECN BL</td>
<td>53.3%</td>
<td>46.7%</td>
<td>7.4%</td>
<td>34.0%</td>
<td>35.0%</td>
</tr>
<tr>
<td>SACK BL</td>
<td>54.2%</td>
<td>45.8%</td>
<td>7.4%</td>
<td>33.2%</td>
<td>34.7%</td>
</tr>
<tr>
<td>WS BL</td>
<td>90.3%</td>
<td>9.7%</td>
<td>2.5%</td>
<td>3.5%</td>
<td>5.7%</td>
</tr>
<tr>
<td>ALL BL</td>
<td>91.4%</td>
<td>8.6%</td>
<td>2.3%</td>
<td>3.2%</td>
<td>5.6%</td>
</tr>
</tbody>
</table>
How significant are speed-ups between downloads of one measurement run?

- For each download run: $\text{Config.MeanTP} \geq x \ast \text{Baseline.MeanTP}$ & $\text{Config.MeanTP} < y \ast \text{Baseline.MeanTP}$
- Results merged for all VPs
- SACK and ECN results comparable to baseline, only small shares of samples show speed-ups ≥ 30
- WS implies increased throughput for over 90% of samples
- WS doubles mean TP for nearly 40% of samples, over 60% show a speed up larger 50%

TCP options

<table>
<thead>
<tr>
<th></th>
<th>vs.</th>
<th>+</th>
<th>-</th>
<th>0.7 - 0.9</th>
<th>0.9 - 1.0</th>
<th>1.0 - 1.1</th>
<th>1.1 - 1.3</th>
<th>1.3 - 1.5</th>
<th>1.5 - 2</th>
<th>>2</th>
</tr>
</thead>
<tbody>
<tr>
<td>Warm-up</td>
<td>BL</td>
<td>35.4%</td>
<td>64.6%</td>
<td>12.1%</td>
<td>37.1%</td>
<td>25.9%</td>
<td>5.3%</td>
<td>1.6%</td>
<td>1.2%</td>
<td>1.5%</td>
</tr>
<tr>
<td>ECN</td>
<td>BL</td>
<td>53.3%</td>
<td>46.7%</td>
<td>7.4%</td>
<td>34.0%</td>
<td>35.0%</td>
<td>8.4%</td>
<td>2.6%</td>
<td>2.2%</td>
<td>5.1%</td>
</tr>
<tr>
<td>SACK</td>
<td>BL</td>
<td>54.2%</td>
<td>45.8%</td>
<td>7.4%</td>
<td>33.2%</td>
<td>34.7%</td>
<td>9.1%</td>
<td>2.6%</td>
<td>2.4%</td>
<td>5.5%</td>
</tr>
<tr>
<td>WS</td>
<td>BL</td>
<td>90.3%</td>
<td>9.7%</td>
<td>2.5%</td>
<td>3.5%</td>
<td>5.7%</td>
<td>12.9%</td>
<td>10.8%</td>
<td>22.9%</td>
<td>38.0%</td>
</tr>
<tr>
<td>ALL</td>
<td>BL</td>
<td>91.4%</td>
<td>8.6%</td>
<td>2.3%</td>
<td>3.2%</td>
<td>5.6%</td>
<td>12.5%</td>
<td>10.2%</td>
<td>22.8%</td>
<td>40.2%</td>
</tr>
</tbody>
</table>
How significant are speed-ups between downloads of one measurement run?

- For each download run: $\text{Config}.\text{MeanTP} \geq x \ast \text{Baseline}.\text{MeanTP} \& \text{Config}.\text{MeanTP} < y \ast \text{Baseline}.\text{MeanTP}$
- Results merged for all VPs
- SACK and ECN results comparable to baseline, only small shares of samples show speed-ups ≥ 30
- WS implies increased throughput for over 90% of samples
- WS doubles mean TP for nearly 40% of samples, over 60% show a speed up larger 50%

<table>
<thead>
<tr>
<th>TCP options</th>
<th>Config vs. +</th>
<th>-</th>
<th>0.7 - 0.9</th>
<th>0.9 - 1.0</th>
<th>1.0 - 1.1</th>
<th>1.1 - 1.3</th>
<th>1.3 - 1.5</th>
<th>1.5 - 2</th>
<th>>2</th>
</tr>
</thead>
<tbody>
<tr>
<td>Warm-up</td>
<td>BL</td>
<td></td>
<td>35.4%</td>
<td>64.6%</td>
<td>12.1%</td>
<td>37.1%</td>
<td>25.9%</td>
<td>5.3%</td>
<td>1.6%</td>
</tr>
<tr>
<td>ECN</td>
<td>BL</td>
<td></td>
<td>53.3%</td>
<td>46.7%</td>
<td>7.4%</td>
<td>34.0%</td>
<td>35.0%</td>
<td>8.4%</td>
<td>2.6%</td>
</tr>
<tr>
<td>SACK</td>
<td>BL</td>
<td></td>
<td>54.2%</td>
<td>45.8%</td>
<td>7.4%</td>
<td>33.2%</td>
<td>34.7%</td>
<td>9.1%</td>
<td>2.6%</td>
</tr>
<tr>
<td>WS</td>
<td>BL</td>
<td></td>
<td>90.3%</td>
<td>9.7%</td>
<td>2.5%</td>
<td>3.5%</td>
<td>5.7%</td>
<td>12.9%</td>
<td>10.8%</td>
</tr>
<tr>
<td>ALL</td>
<td>BL</td>
<td></td>
<td>91.4%</td>
<td>8.6%</td>
<td>2.3%</td>
<td>3.2%</td>
<td>5.6%</td>
<td>12.5%</td>
<td>10.2%</td>
</tr>
</tbody>
</table>
TCP vs. QUIC

- 70% of quiche downloads show increased throughput compared to aioquic
- quiche vs. aioquic: over 45% of samples show a speed-up ≥ 50%
- > 55% of TCP All downloads faster than aioquic
- But: over 30% of aioquic samples show a speed-up ≥ 100% compared to TCP All
- Over 70% of quiche downloads outperform TCP All, doubled mean throughput for ≥ 40% of samples

QUIC and TCP

<table>
<thead>
<tr>
<th>Config. vs.</th>
<th>+</th>
<th>-</th>
<th>0.7 - 0.9</th>
<th>0.9 - 1.0</th>
<th>1.0 - 1.1</th>
<th>1.1 - 1.3</th>
<th>1.3 - 1.5</th>
<th>1.5 - 2</th>
<th>>2</th>
</tr>
</thead>
<tbody>
<tr>
<td>quiche</td>
<td>aioquic</td>
<td>70.0%</td>
<td>30.0%</td>
<td>6.8%</td>
<td>2.9%</td>
<td>4.0%</td>
<td>10.5%</td>
<td>7.7%</td>
<td>8.9%</td>
</tr>
<tr>
<td>aioquic</td>
<td>ALL</td>
<td>44.5%</td>
<td>55.5%</td>
<td>12.2%</td>
<td>4.7%</td>
<td>3.3%</td>
<td>2.7%</td>
<td>1.6%</td>
<td>4.6%</td>
</tr>
<tr>
<td>quiche</td>
<td>ALL</td>
<td>71.9%</td>
<td>28.1%</td>
<td>8.6%</td>
<td>5.5%</td>
<td>9.1%</td>
<td>11.8%</td>
<td>4.3%</td>
<td>5.9%</td>
</tr>
</tbody>
</table>
TCP vs. QUIC

- 70% of *quiche* downloads show increased throughput compared to *aioquic*
- *quiche* vs. *aioquic*: over 45% of samples show a speed-up \(\geq 50\% \)
- \(> 55\% \) of TCP All downloads faster than *aioquic*
- But: over 30% of *aioquic* samples show a speed-up \(\geq 100\% \) compared to TCP All
- Over 70% of *quiche* downloads outperform TCP All, doubled mean throughput for \(\geq 40\% \) of samples

QUIC and TCP

<table>
<thead>
<tr>
<th>Config.</th>
<th>vs.</th>
<th>+</th>
<th>-</th>
<th>0.7 - 0.9</th>
<th>0.9 - 1.0</th>
<th>1.0 - 1.1</th>
<th>1.1 - 1.3</th>
<th>1.3 - 1.5</th>
<th>1.5 - 2</th>
<th>>2</th>
</tr>
</thead>
<tbody>
<tr>
<td>quiche</td>
<td>aioquic</td>
<td>70.0%</td>
<td>30.0%</td>
<td>6.8%</td>
<td>2.9%</td>
<td>4.0%</td>
<td>10.5%</td>
<td>7.7%</td>
<td>8.9%</td>
<td>38.9%</td>
</tr>
<tr>
<td>aioquic</td>
<td>ALL</td>
<td>44.5%</td>
<td>55.5%</td>
<td>12.2%</td>
<td>4.7%</td>
<td>3.3%</td>
<td>2.7%</td>
<td>1.6%</td>
<td>4.6%</td>
<td>32.4%</td>
</tr>
<tr>
<td>quiche</td>
<td>ALL</td>
<td>71.9%</td>
<td>28.1%</td>
<td>8.6%</td>
<td>5.5%</td>
<td>9.1%</td>
<td>11.8%</td>
<td>4.3%</td>
<td>5.9%</td>
<td>40.7%</td>
</tr>
</tbody>
</table>

Simon Bauer — Quantifying the Effects of TCP Options, QUIC, and CDNs on Throughput
TCP vs. QUIC

- 70% of *quiche* downloads show increased throughput compared to *aioquic*
- *quiche* vs. *aioquic*: over 45% of samples show a speed-up ≥ 50
- > 55% of TCP All downloads faster than *aioquic*
- But: over 30% of *aioquic* samples show a speed-up ≥ 100% compared to TCP All
- Over 70% of *quiche* downloads outperform TCP All, doubled mean throughput for ≥ 40% of samples

<table>
<thead>
<tr>
<th>QUIC and TCP</th>
</tr>
</thead>
<tbody>
<tr>
<td>Config.</td>
</tr>
<tr>
<td>quiche</td>
</tr>
<tr>
<td>aioquic</td>
</tr>
<tr>
<td>quiche</td>
</tr>
</tbody>
</table>
TCP vs. QUIC

- 70% of *quiche* downloads show increased throughput compared to *aioquic*
- *quiche* vs. *aioquic*: over 45% of samples show a speed-up \(\geq 50\% \)
- > 55% of TCP All downloads faster than *aioquic*
- But: over 30% of *aioquic* samples show a speed-up \(\geq 100\% \) compared to TCP All
- Over 70% of *quiche* downloads outperform TCP All, doubled mean throughput for \(\geq 40\% \) of samples

QUIC and TCP

<table>
<thead>
<tr>
<th>Config. vs.</th>
<th>+</th>
<th>-</th>
<th>0.7 - 0.9</th>
<th>0.9 - 1.0</th>
<th>1.0 - 1.1</th>
<th>1.1 - 1.3</th>
<th>1.3 - 1.5</th>
<th>1.5 - 2</th>
<th>>2</th>
</tr>
</thead>
<tbody>
<tr>
<td>quiche</td>
<td>aioquic</td>
<td>70.0%</td>
<td>30.0%</td>
<td>6.8%</td>
<td>2.9%</td>
<td>4.0%</td>
<td>10.5%</td>
<td>7.7%</td>
<td>8.9%</td>
</tr>
<tr>
<td>aioquic</td>
<td>ALL</td>
<td>44.5%</td>
<td>55.5%</td>
<td>12.2%</td>
<td>4.7%</td>
<td>3.3%</td>
<td>2.7%</td>
<td>1.6%</td>
<td>4.6%</td>
</tr>
<tr>
<td>quiche</td>
<td>ALL</td>
<td>71.9%</td>
<td>28.1%</td>
<td>8.6%</td>
<td>5.5%</td>
<td>9.1%</td>
<td>11.8%</td>
<td>4.3%</td>
<td>5.9%</td>
</tr>
</tbody>
</table>
Conclusion

Measurement results

- TCP WS is crucial to achieve higher throughput rates
- Significant difference between downloads with *quiche* and *aioquic*
- *quiche* mostly exceeds TCP with all options (diff. between measurement series observed)
- Observed different impacts by vantage point location and edge caching

Future Work

- Extension of pipeline with further QUIC implementations
- Conducting root cause analysis of throughput limitations
- Running long-term measurements

Pipeline published on Github [15]
Conclusion

Measurement results

- TCP WS is crucial to achieve higher throughput rates
- Significant difference between downloads with quiche and aioquic
- quiche mostly exceeds TCP with all options (diff. between measurement series observed)
- Observed different impacts by vantage point location and edge caching

Future Work

- Extension of pipeline with further QUIC implementations
- Conducting root cause analysis of throughput limitations
- Running long-term measurements

Pipeline published on Github [15]
Conclusion

Measurement results

- TCP WS is crucial to achieve higher throughput rates
- Significant difference between downloads with quiche and aioquic
- quiche mostly exceeds TCP with all options (diff. between measurement series observed)
- Observed different impacts by vantage point location and edge caching

Future Work

- Extension of pipeline with further QUIC implementations
- Conducting root cause analysis of throughput limitations
- Running long-term measurements

Pipeline published on Github [15]
Bibliography

Back-up - How does observed performance differ between vantage points?

Mean Throughput
- *MUC* shows higher throughput for the majority of samples
- *SFO* & *SGP*: share of samples significantly exceeding throughput observed by *MUC*

Mean RTT
- *SFO* & *SGP*:
 - DLs with significantly increased throughput correlate to very small RTTs
 - Small RTTs associate with DLs from Akamai, Cloudflare, and Amazon domains
Back-up - How does observed performance differ between vantage points?

Mean Throughput
- *MUC* shows higher throughput for the majority of samples
- *SFO & SGP*: share of samples significantly exceeding throughput observed by *MUC*

Mean RTT
- *SFO & SGP*:
 - DLs with significantly increased throughput correlate to very small RTTs
 - Small RTTs associate with DLs from Akamai, Cloudflare, and Amazon domains
Back-up - CDN Throughput (MUC, SFO, SGP)
Back-up - CDN RTT (MUC, SFO, SGP)
5.3% of domains do not support a single option while 81.0% support all three considered options. ECN is supported by 85.8%, SACK by 91.4% and WS by 91.1% of the domains.
Back-up - With vs. Without Warm-up (July’23 vs. June’23)

With Warm-up

Without Warm-up
Back-up - Speed-ups June’23 vs July’23

June’23

TCP options

<table>
<thead>
<tr>
<th>Config. vs.</th>
<th>+</th>
<th>-</th>
<th><0.5</th>
<th>0.5 - 0.6</th>
<th>0.6 - 0.7</th>
<th>0.7 - 0.8</th>
<th>0.8 - 0.9</th>
<th>0.9 - 1.0</th>
<th>1.0 - 1.1</th>
<th>1.1 - 1.2</th>
<th>>1.2</th>
</tr>
</thead>
<tbody>
<tr>
<td>ECN</td>
<td>ALL14</td>
<td>9.6%</td>
<td>90.4%</td>
<td>39.3%</td>
<td>15.4%</td>
<td>8.5%</td>
<td>10.7%</td>
<td>9.7%</td>
<td>6.8%</td>
<td>3.2%</td>
<td>1.4%</td>
</tr>
<tr>
<td>SACK</td>
<td>ALL14</td>
<td>10.3%</td>
<td>89.7%</td>
<td>37.7%</td>
<td>15.0%</td>
<td>8.8%</td>
<td>11.2%</td>
<td>10.2%</td>
<td>6.9%</td>
<td>3.4%</td>
<td>1.1%</td>
</tr>
<tr>
<td>WS</td>
<td>ALL14</td>
<td>45.9%</td>
<td>54.1%</td>
<td>7.3%</td>
<td>1.7%</td>
<td>2.4%</td>
<td>3.9%</td>
<td>7.1%</td>
<td>31.7%</td>
<td>28.9%</td>
<td>5.3%</td>
</tr>
</tbody>
</table>

QUIC and TCP

<table>
<thead>
<tr>
<th>Config. vs.</th>
<th>+</th>
<th>-</th>
<th>0.7 - 0.8</th>
<th>0.8 - 0.9</th>
<th>0.9 - 1.0</th>
<th>1.0 - 1.1</th>
<th>1.1 - 1.2</th>
<th>1.2 - 1.3</th>
<th>1.3 - 1.5</th>
<th>1.5 - 2</th>
<th>>2</th>
</tr>
</thead>
<tbody>
<tr>
<td>quiche</td>
<td>TCP-BL</td>
<td>72.1%</td>
<td>27.9%</td>
<td>2.8%</td>
<td>1.9%</td>
<td>3.1%</td>
<td>11.5%</td>
<td>7.1%</td>
<td>3.7%</td>
<td>6.4%</td>
<td>13.2%</td>
</tr>
<tr>
<td>quiche</td>
<td>TCP-ALL14</td>
<td>47.6%</td>
<td>52.4%</td>
<td>3.9%</td>
<td>5.9%</td>
<td>5.4%</td>
<td>12.9%</td>
<td>6.5%</td>
<td>3.1%</td>
<td>5.6%</td>
<td>3.9%</td>
</tr>
</tbody>
</table>

July’23

TCP options

<table>
<thead>
<tr>
<th>Config</th>
<th>vs.</th>
<th>+</th>
<th>-</th>
<th>0.7 - 0.8</th>
<th>0.8 - 0.9</th>
<th>0.9 - 1.0</th>
<th>1.0 - 1.1</th>
<th>1.1 - 1.2</th>
<th>1.2 - 1.3</th>
<th>1.3 - 1.5</th>
<th>1.5 - 2</th>
<th>>2</th>
</tr>
</thead>
<tbody>
<tr>
<td>ECN</td>
<td>BL</td>
<td>53.3%</td>
<td>46.7%</td>
<td>2.1%</td>
<td>5.3%</td>
<td>34.0%</td>
<td>35.0%</td>
<td>6.1%</td>
<td>2.3%</td>
<td>2.6%</td>
<td>2.2%</td>
<td>5.1%</td>
</tr>
<tr>
<td>SACK</td>
<td>BL</td>
<td>54.2%</td>
<td>45.8%</td>
<td>2.1%</td>
<td>5.3%</td>
<td>33.2%</td>
<td>34.7%</td>
<td>6.3%</td>
<td>2.8%</td>
<td>2.6%</td>
<td>2.4%</td>
<td>5.5%</td>
</tr>
<tr>
<td>All</td>
<td>BL</td>
<td>91.4%</td>
<td>8.6%</td>
<td>1.0%</td>
<td>1.3%</td>
<td>3.2%</td>
<td>5.6%</td>
<td>6.8%</td>
<td>5.7%</td>
<td>10.2%</td>
<td>22.8%</td>
<td>40.2%</td>
</tr>
<tr>
<td>quiche</td>
<td>TCP-BL</td>
<td>82.9%</td>
<td>17.1%</td>
<td>2.1%</td>
<td>2.8%</td>
<td>3.9%</td>
<td>5.2%</td>
<td>3.9%</td>
<td>2.9%</td>
<td>4.7%</td>
<td>14.6%</td>
<td>51.5%</td>
</tr>
<tr>
<td>quiche</td>
<td>TCP-ALL</td>
<td>71.9%</td>
<td>28.1%</td>
<td>4.3%</td>
<td>4.3%</td>
<td>5.5%</td>
<td>9.1%</td>
<td>7.5%</td>
<td>4.3%</td>
<td>4.3%</td>
<td>5.9%</td>
<td>40.7%</td>
</tr>
</tbody>
</table>