The Observer Effect in Computer Networks

Tal Mizrahi*, Michael Schapira°, Yoram Moses*

Applied Networking Research Workshop (ANRW) 2024

The Uncertainty Principle in Physics

The position and momentum of a particle cannot both be measured precisely.

The uncertainty relation:

Werner Heisenberg

The Observer Effect in Physics

The measurement of a system affects the measured system.

 $\Delta x \cdot \Delta p \ge \hbar$

The uncertainty in the position of a particle, measured using a Gamma ray. The uncertainty in the momentum, which is affected by the Gamma ray.

Werner Heisenberg

This Paper: The Observer Effect in Networks

The act of measuring the performance of a network affects the network's performance.

The uncertainty relation in networks:

Understanding the Observer Effect in Networks

Measurement has overhead.

The overhead may affect the network performance.

Example:

Active measurement: performed by exchanging control messages.

Less uncertainty

more overhead.

Why Overhead Matters

Example:

High load without measurement.

A

data

overhead

The measurement overhead increases the load and can cause packet loss.

Why Overhead Matters

Overprovisioned network:

Network is not loaded

Overhead does not cause packet loss.

Excess resources can accommodate the measurement overhead.

However, excess resources have a cost.

The Impact of the Measurement Overhead

In this work we quantify the impact by the overhead traffic rate [bits per time unit].

A Classification of Measurement Methods

Active measurement

Impact: rate of control plane messages [bits per second per flow].

Passive measurement

Impact: rate of management plane messages sent to the external analyzer [bits per second per flow].

In-situ measurement

Impact: average rate of data plane overhead bits [bits per second per flow].

The Scope of our Theoretical Model

We focus on:

- Periodic measurements.
- The uncertainty depends on the measurement period.
- The impact depends on the overhead traffic rate.

The Observer Factor

The **observer factor**: the number of overhead bits per measurement period [per flow].

The Observer Factor in Practice

The observer factor in 3 measurement methods, based on 3 open source code repositories used in our evaluation.

Measurement Method	Observer Factor [bytes per measurement period]
Active – CCM [1]	101
Passive – gNMI [2]	204
In-situ – IOAM [3]	80

- [1] Active measurement using periodic IEEE 802.1ag Continuity Check Messages (CCM). https://github.com/vnrick/dot1ag-utils
- [2] Passive measurement using local counters and streaming telemetry using gNMI. Our analysis used a Stratum/BMv2 switch. https://github.com/stratum/stratum
- [3] In-situ measurement using In-situ OAM (IOAM) [RFC 9197]. Assuming a 3-hop network, with 8 overhead bytes per hop, and an IPv6 tunnel. https://github.com/Advanced-Observability/ioam-linux-kernel

The Observer Factor in Practice – Example

- A→B is monitored using a periodic measurement.
- We want to know that time at which A→B fails.
- **Uncertainty** = measurement period.

Measurement Method	Observer Factor [bytes per measurement period]
Active – CCM	101
Passive – gNMI	204
In-situ – IOAM	80

The Observer Factor in Practice – Example

- A→B is monitored using a periodic measurement.
- We want to know that time at which A→B fails.
- Uncertainty = measurement period.

Measurement Method	Observer Factor [bytes per measurement period]
Active – CCM	101
Passive – gNMI	204
In-situ – IOAM	80

14

Given the desired uncertainty, we can estimate the impact of each of the three methods above by:

Impact ≥ **Observer factor / Uncertainty**

The Observer Factor in Practice

The observer factor allows an apples-to-apples comparison between different measurement methods.

Evaluating the Uncertainty Relation

Our evaluation used 3 open source code repositories, implementing 3 measurement protocols.

Measured vs. theoretical of [1].

The theoretical curve is defined by the uncertainty relation: $\Delta P = \eta/\Delta M$

[1] Active measurement using periodic IEEE 802.1ag Continuity Check Messages (CCM). https://github.com/vnrick/dot1ag-utils

Conclusion

The observer effect in networks:

The act of measuring the performance of a network affects the network's performance.

The observer factor:

- A practical metric of the overhead caused by the measurement.
- The observer factor is an important property of every existing / future measurement method.

Thanks!

Example: Speed Test

An example of the observer effect:

Running a speed test affects the performance of other applications running in the background.

Example: Speed Test

An example of the observer effect:

Running a speed test affects the performance of other applications running in the background.

An example <u>not related</u> to the observer effect:

Some systems are designed to improve their performance under tests.

- "Internet magically gets faster when opening speedtest?" [1]
- "Internet speed goes up if you run a speed test" [2]

^[1] https://news.ycombinator.com/item?id=31062799

^[2] https://www.thestudentroom.co.uk/showthread.php?t=5205408

References

[1] T. Mizrahi, M. Schapira, and Y. Moses, "The observer effect in computer networks", ACM Applied Networking Research Workshop (ANRW), https://dl.acm.org/doi/10.1145/3673422.3674894, 2024.

[2] T. Mizrahi, M. Schapira, and Y. Moses, "The observer effect in computer networks", extended version, ArXiv 2406.09093, https://arxiv.org/abs/2406.09093, 2024.