

Applied Networking Research Workshop

An Empirical Characterization of Anycast Convergence Time

Bernhard Degen Mattijs Jonker Roland van Rijswijk-Deij Raffaele Sommese

University of Twente

July 23, 2024

Convergence The time between a BGP update and routing reaching a stable state

May be impacted by BGP's MRAI and RFD

- May be impacted by BGP's MRAI and RFD
- How long should we wait after an announcement before its effect can be observed?

- May be impacted by BGP's MRAI and RFD
- How long should we wait after an announcement before its effect can be observed? 2 minutes?

- May be impacted by BGP's MRAI and RFD
- How long should we wait after an announcement before its effect can be observed? 2 minutes? 10 minutes?

- May be impacted by BGP's MRAI and RFD
- How long should we wait after an announcement before its effect can be observed? 2 minutes? 10 minutes? 50 minutes?

- May be impacted by BGP's MRAI and RFD
- How long should we wait after an announcement before its effect can be observed? 2 minutes? 10 minutes? 50 minutes?
- Accurate estimations relevant to research and operations

Convergence The time between a BGP update and routing reaching a stable state

- May be impacted by BGP's MRAI and RFD
- How long should we wait after an announcement before its effect can be observed? 2 minutes? 10 minutes? 50 minutes?
- Accurate estimations relevant to research and operations

Goal Empirically establish BGP convergence times in an anycast setting

Methodology

Incrementally announce anycast VPs and measure routing changes

1. Shuffle and partition /24 hitlist

- 1. Shuffle and partition /24 hitlist
- 2. For each partition:
 - 2.1 Announce prefix from a set of VPs

- 1. Shuffle and partition /24 hitlist
- 2. For each partition:
 - 2.1 Announce prefix from a set of VPs
 - 2.2 Map catchments every 10 seconds for 5 minutes

- 1. Shuffle and partition /24 hitlist
- 2. For each partition:
 - 2.1 Announce prefix from a set of VPs
 - 2.2 Map catchments every 10 seconds for 5 minutes
 - 2.3 Do this for 4 sets of VPs (6, 12, 18, 31 VPs)

Incrementally announce anycast VPs and measure routing changes

- 1. Shuffle and partition /24 hitlist
- 2. For each partition:
 - 2.1 Announce prefix from a set of VPs
 - 2.2 Map catchments every 10 seconds for 5 minutes
 - 2.3 Do this for 4 sets of VPs (6, 12, 18, 31 VPs)

Catchment mapping methods used

Incrementally announce anycast VPs and measure routing changes

- 1. Shuffle and partition /24 hitlist
- 2. For each partition:
 - 2.1 Announce prefix from a set of VPs
 - 2.2 Map catchments every 10 seconds for 5 minutes
 - 2.3 Do this for 4 sets of VPs (6, 12, 18, 31 VPs)

Catchment mapping methods used

Forward Internet-wide probing

Incrementally announce anycast VPs and measure routing changes

- 1. Shuffle and partition /24 hitlist
- 2. For each partition:
 - 2.1 Announce prefix from a set of VPs
 - 2.2 Map catchments every 10 seconds for 5 minutes
 - 2.3 Do this for 4 sets of VPs (6, 12, 18, 31 VPs)

Catchment mapping methods used

Forward Internet-wide probing

Reverse probing VPs from Ark

Forward probing

Result fine-grained catchment mapping at /24 level

Reverse probing

In parallel to forward probing

- In parallel to forward probing
- Ark nodes query VPs via DNS

- In parallel to forward probing
- Ark nodes query VPs via DNS
- We assign a different A record to each VP (like id.server)

- In parallel to forward probing
- Ark nodes query VPs via DNS
- We assign a different A record to each VP (like id.server)
- Less granularity: 149 Ark nodes vs. 3.92M hitlist targets

 Catchments vary vastly in size

- Catchments vary vastly in size
- Some VPs take preference over others

Convergence times

VPs	50%		80%		95%	
	P ₅₀	σ	P ₈₀	σ	P_{95}	σ
6	6.64	0.26	12.36	4.61	31.12	26.73
12	6.70	0.09	10.84	2.78	32.48	13.84
18	6.18	0.07	9.90	1.27	27.80	5.49
31	5.99	0.06	9.40	0.44	25.02	4.49

Convergence times

VPs	50%		80%		95%	
	P ₅₀	σ	P ₈₀	σ	P_{95}	σ
6	6.64	0.26	12.36	4.61	31.12	26.73
12	6.70	0.09	10.84	2.78	32.48	13.84
18	6.18	0.07	9.90	1.27	27.80	5.49
31	5.99	0.06	9.40	0.44	25.02	4.49

▶ 80% converged within scan duration

Convergence times

VPs	50%		80%		95%	
	P ₅₀	σ	P ₈₀	σ	P_{95}	σ
6	6.64	0.26	12.36	4.61	31.12	26.73
12	6.70	0.09	10.84	2.78	32.48	13.84
18	6.18	0.07	9.90	1.27	27.80	5.49
31	5.99	0.06	9.40	0.44	25.02	4.49

- ▶ 80% converged within scan duration
- Noticeable decrease in convergence time with more active VPs

Convergence seems delayed

Convergence seems delayed
 ...since 11 nodes across all
 configurations did not converge at all!

- Convergence seems delayed
 ...since 11 nodes across all
 configurations did not converge at all!
- Load balancing?

- Convergence seems delayed
 ...since 11 nodes across all
 configurations did not converge at all!
- Load balancing?
- After excluding alternating nodes, it supports our results

Conclusions

Conclusion

Convergence is much faster than commonly assumed

Findings

- We can measure anycast convergence without end-user interaction
- \blacktriangleright 80% of the Internet converges within \sim 10 s
- Faster convergence with more announcements

Conclusion

Convergence is much faster than commonly assumed

Findings

- We can measure anycast convergence without end-user interaction
- ▶ 80% of the Internet converges within \sim 10 s
- Faster convergence with more announcements

Further ideas

- Increase measurement resolution
- Zoom in on regional differences
- IPv6?

An Empirical Characterization of Anycast Convergence Time

Paper doi.org/m8bx Dataset doi.org/m44z Contact b.j.degen@utwente.nl