
DARE: Making Diffusing Computations More
Efficient for Loop-Free Shortest-Path Routing

J.J. Garcia-Luna-Aceves
Morteza Moghaddassian

University of Toronto

{jj.garcialunaaceve,m.moghaddassian}@utoronto.ca

ACM/IRTF ANRW 2024

2

Outline

➢ Motivation: Why do we need yet another routing algorithm for diffusing
computation?

➢ DARE: Faster diffusing computation with less signaling

➢ Comparison of DARE and DUAL routing methods

3

Distributed Bellman-Ford Algorithm (DBF)

➢ DBF works very efficient for minimum-hop routing in many scenarios.

➢ DBF main issue is count-to-infinity after destination failure or network
partitioning.

➢ DBF may cause short or long-lived temporary routing loops after link
failures happens or the link-cost increases.

4

Distributed Bellman-Ford Algorithm (DBF)

➢ DBF works very efficient for minimum-hop routing in many scenarios.

➢ DBF main issue is count-to-infinity after destination failure or network
partitioning.

➢ DBF may cause short or long-lived temporary routing loops after link
failures happens or the link-cost increases.

Only a few steps in for convergence but temporary loops emerged.

5

Diffusing Update Algorithm (DUAL)

➢ Using query-reply signaling based on feasible distances to eliminate routing

loops.

➢ Condition for loop-free next hops selection

𝒮𝒩𝒞: (ℎ𝑑
𝑞

< 𝑓𝑑
𝑎) ∧ (ℎ𝑑

𝑞
= 𝑀𝑖𝑛{ℎ𝑑

𝑛 + 𝑙(𝑎, 𝑛)|𝑛 ∈ 𝑁𝑎})

➢ If SNC is not satisfied by any neighbor:

❖ Set 𝒇𝒅
𝒂 = 𝒉∞ & query all neighbors stating new distance for 𝒉𝒅

𝒂 (Diffuse)

❖ Wait for all neighbors to reply (Blocking in Active mode).

❖ Compute a new distance → SNC satisfied → Go to Passive mode.

6

Example of Loop-Free Routing in DUAL

7

Example of Loop-Free Routing in DUAL

More steps, Several Blocking Routers, More Signaling, but no Routing Loops occur.

8

Key Issues with DUAL

➢ DUAL was meant to provide only a single loop-free next hop per destination
at each router.
➢ Having multiple next hop choices can reduce signaling.

➢ A DUAL router that sends a query (diffuse) cannot use a new next hop until
it receives reply from all its neighbors.

➢ Some neighbors may offer loop-free routers that are valid.

➢ Unnecessary blocking while diffusing can block the flow of data packets in the data
plane.

9

The Road to DARE!
➢ DARE is compatible! → only changing the meaning of feasible next hop

(successor) as used in DUAL.

➢ feasible successor in DUAL: a neighbor router reporting a distance value smaller than

a feasible distance value & be the shortest distance available.

➢ feasible successor in DARE: a neighbor router reporting a smaller distance than the

last distance the router had at the time it was passive.

❑ Use neighbor routers that reported shorter distances than the distance the router have

reported to its neighbors → Call these routers the ordered routers.

❑ Diffuse only if no ordered router is available or none of the ordered neighbors offer

shorter distances.

❑ Decouple shortest path calculation from the selection of successor neighbors.

10

The Road to DARE - Continued

➢ DARE remembers what DUAL forgets!

➢ DUAL routers do not remember the neighbor that forced them to go into a diffusing

computation.

➢ Send replies to every neighbor! → Much signaling overhead.

➢ Can only participate in a single diffusing computation at any given time.

➢ DARE routers remember the neighbor that forced them to go into a diffusing

computation.

➢ Reply only to the neighbor remembered! → Less signaling overhead.

➢ Can participate in multiple diffusing computation! Active nodes can merge diffusing

computations.

11

The Road to DARE - Continued

➢ DARE is fair!

➢ DUAL routers can only change successor when a local condition is satisfied, or a

diffusing computation completes.

➢ DARE routers can change successor at any time only if the successor neighbor reports a

shorter distance held by the router when it was passive.

➢ DUAL routers use a complex state machine to account for multiple diffusing computations.

➢ Hard to evolve and include multiple performance criteria.

➢ DARE routers use a much simpler state machine.

➢ Much more flexibility for using more performance criteria.

12

The DARE State Machine

Passive Active

13

The DARE State Machine

Passive Active

𝑄 𝑅𝐷𝑑
𝑣, 𝑣 ∈ 𝑁𝑘

^
𝐿𝐷𝐶 = 𝑇

𝑙𝑖𝑛𝑘 𝑐ℎ𝑎𝑛𝑔𝑒/𝑢𝑝𝑑𝑎𝑡𝑒
^

𝐿𝐷𝐶 = 𝑇

14

The DARE State Machine

Passive Active

𝑄 𝑅𝐷𝑑
𝑣, 𝑣 ∈ 𝑁𝑘

^
𝐿𝐷𝐶 = 𝑇

𝑙𝑖𝑛𝑘 𝑐ℎ𝑎𝑛𝑔𝑒/𝑢𝑝𝑑𝑎𝑡𝑒
^

𝐿𝐷𝐶 = 𝑇
𝑖𝑛𝑝𝑢𝑡 𝑒𝑣𝑒𝑛𝑡 ^ 𝐿𝐷𝐶 = 𝐹

15

The DARE State Machine

Passive Active

𝑄 𝑅𝐷𝑑
𝑣, 𝑣 ∈ 𝑁𝑘

^
𝐿𝐷𝐶 = 𝑇

𝑙𝑖𝑛𝑘 𝑐ℎ𝑎𝑛𝑔𝑒/𝑢𝑝𝑑𝑎𝑡𝑒
^

𝐿𝐷𝐶 = 𝑇

∀ 𝑣 ∈ 𝑁𝑘(𝐶𝑑𝑣
𝑘 = 𝐹)

^
𝐿𝐷𝐶 = 𝐹

∀ 𝑣 ∈ 𝑁𝑘(𝐶𝑑𝑣
𝑘 = 𝑇)

^
(𝑖𝑛𝑝𝑢𝑡 𝑒𝑣𝑒𝑛𝑡)𝑖𝑛𝑝𝑢𝑡 𝑒𝑣𝑒𝑛𝑡 ^ 𝐿𝐷𝐶 = 𝐹

16

The DARE State Machine

Passive Active

𝑄 𝑅𝐷𝑑
𝑣, 𝑣 ∈ 𝑁𝑘

^
𝐿𝐷𝐶 = 𝑇

𝑙𝑖𝑛𝑘 𝑐ℎ𝑎𝑛𝑔𝑒/𝑢𝑝𝑑𝑎𝑡𝑒
^

𝐿𝐷𝐶 = 𝑇

∀ 𝑣 ∈ 𝑁𝑘(𝐶𝑑𝑣
𝑘 = 𝐹)

^
𝐿𝐷𝐶 = 𝐹

∀ 𝑣 ∈ 𝑁𝑘(𝐶𝑑𝑣
𝑘 = 𝑇)

^
(𝑖𝑛𝑝𝑢𝑡 𝑒𝑣𝑒𝑛𝑡)𝑖𝑛𝑝𝑢𝑡 𝑒𝑣𝑒𝑛𝑡 ^ 𝐿𝐷𝐶 = 𝐹

∀ 𝑣 ∈ 𝑁𝑘(𝐶𝑑𝑣
𝑘 = 𝐹) ^ (𝐿𝐷𝐶 = 𝑇)

17

Example: Link Failure in DARE

18

Example: Link Failure in DARE

Fewer steps than DUAL, less overhead, and no routing loop occurs!

19

Conclusion

➢ DARE is a new routing algorithm using diffusing computation.

➢ DARE speaks the same language as DUAL does but DARE:

➢ is more efficient and uses a simpler state machine.

➢ uses less signaling overhead for synchronization.

➢ can switch successor nodes at any time.

➢ Can converges faster!

➢ A step forward is to use DARE in a routing protocol.

20

Thank you for your time!

Questions

21

Q/A: Results (Single Node Convergence)

Less messaging & Zero blocking!

	Slide 1
	Slide 2
	Slide 3
	Slide 4
	Slide 5
	Slide 6
	Slide 7
	Slide 8
	Slide 9
	Slide 10
	Slide 11
	Slide 12
	Slide 13
	Slide 14
	Slide 15
	Slide 16
	Slide 17
	Slide 18
	Slide 19
	Slide 20
	Slide 21

