
Protocol Fixes for KeyTrap Vulnerabilities

Elias Heftrig, Haya Schulmann, Niklas Vogel, Michael Waidner



Outline

• Recap on KeyTrap Attacks

• Problems with Short-Term Mitigations

• Suggested Protocol Fixes

• Discussion



Recap on KeyTrap Attacks



Exploitation of DNSSEC Protocol Design

• “Eager validation“ approach to ensure robustness against validation 
errors
• Try all possible DNSKEYs for an RRSIG until one works
• Try all possible RRSIGs for an RRset until one works

• Specification implies complex algorithms over expensive public-key 
crypto operations
→ CPU resource exhaustion attacks on DNSSEC validators
• First vulnerable requirements date back to 1998

• Patches break core specification requirements



DoS by DNSSEC Validation

• High impact

• Resolvers could be stalled up to 16h with just a single response

• Low resources

• Host a malicious domain and serve a malicious zone file

• All tested DNSSEC implementations found vulnerable

• Resolvers, Libraries, Debugging Tools, …

• Abundance of vulnerable networks

→ appx. 1/3 of web clients worldwide use validating resolvers

• Patching against KeyTrap required tight coordination with a multi-vendor, >30 heads task force

„A potentially Internet-killing vulnerability“
- Internet Pioneer during Disclosure



Fundamental Problem Exposed by KeyTrap

Openness of DNS(SEC) protocol semantics allows for a plethora of KeyTrap-like attack vectors

• Exploitation of DS hashing and RRSIG validation

• Exploitation of valid and invalid signatures

• Attacks covering different RRsets (cnf. Protocol semantics)

CPU resource exhaustion has never been properly addressed in DNSSEC until KeyTrap

• RFC4033 and RFC4035 generally warned about resource exhaustion attacks

• NSEC3 specification initially addressed resource requirements from SHA1 iteration counts

• Ideation of a DNSKEY-only attack vector by Dutch Bachelor‘s student (not weaponized)

• RRSIG-based CPU resource exhaustion attack exploiting RRSIGs over NSEC RRs in previous work

The Short-term Fixes against KeyTrap address the attack vectors but introduce (so-far) unmanaged complexity



Problems with Short-Term Mitigations



Architectural Containment

Scheduling-based countermeasures

• Intermitting long-running validations to allow other tasks in the pipeline to proceed

→ Still allows waste of (low-priority) CPU cycles – economic attacks?

➢ All-valid RRSIGs attack on patched BIND9



Limiting Cryptographic Operations

Limits encompass the numbers of …

• RRSIGs tried to validate a given RRset

• DNSKEYs tried with a given RRSIG

• DS RRs tried to validate a given DNSKEY

• Failed or attempted validations per message

• RRSIG and DS validations per resolution

→ Per-resolution limits extend general DNS resolver instructions from RFC1035 to DNSSEC 



Problems with current per-resolution Limits

Inconsistent selection of limits

• Limits and their values are hardcoded or set by configuration file

• Desirable and (arguably necessary) to adapt to individual resolver requirements

• Problematic in absence of a mechanism to signal and adapt name server responses to these limits

→ factor of unreliability, disincentivizing domain-side use of DNSSEC

Limits to DNSSEC imply limits to DNS → Layer Violation

• Add complexity to the already complex DNS(SEC)

• Restrict scalability of DNS (“DNS Security Restrictions”?)

• Hamper future DNS protocol development

• Managing validation complexity in face of (per-resolution) limited validation budgets is challenging



Factors Driving Complexity of Validation

Number of RRsets requiring validation in responses

• Introduction of new record types (e.g. DELEG)

• Elective validation (of, e.g., infrastructure RRsets)

• Openness to future DNS use cases

KeyTag collisions

• Induce ‘natural’ validation failures

• Make validation complexity a matter of probability

• Tags don’t necessarily follow a uniform random distribution
• Collision probability depends on DNSSEC algorithm

➢ Frequencies of KeyTag observations 
in 1M dice-rolled RSASHA256 keys

Non-uniformity



Factors Driving Complexity of Validation

Crypto-agility

• Future algorithms that increase CPU load may require global revision of local validation limits

• Different crypto libraries varying in CPU requirements

Additional promoters of complexity

• Varying depth of delegation

• Domains may require multiple resolutions to get resolved (corner case bugs)

• Cross-zone coordination

• Depth of recursion (esp. CNAMEs)



Suggested Protocol Fixes



Managing Validation Budgets

Set a global minimum per-resolution validation budget in the specification

• Not considering elective validations or cache

• Reflecting current operational insights and updated over time

→ allows inter-zone budget alignment

• Caveat: needs to consider aliasing 

Introduce EDNS0 options to signal…

• Total and current validation budgets from resolvers to name servers

• Validation budget depletion error from resolvers to clients

→ supports global monitoring of validation budgets at domains and Internet nodes



Outlawing KeyTag collisions

• Demand KeyTag to uniquely identify a DNSKEY in a zone

• Blunt confrontation to RFC4034, requiring the opposite

• Just changing semantics of current records would need
worldwide coordination

→ hard to enforce without breaking things

Solution: RFC3755-style introduction of new key record



Introducing IDKEY

Replacement of DNSKEY Record

• Features 16-bit Key ID, unique per zone

• Validators are required to insist on uniqueness

• RRSIGs are re-purposed (Key ID ~ Key Tag)

• DS replaced by analogue IDDS

• Required for secure fallback to insecure during
transition

• Replacement of CDNSKEY and CDS is straightforward

➢ IDKEY Record Format

➢ IDDS Record Format



Transitioning to IDKEY

Transition Phase

• Resolvers supporting IDKEY query for both DNSKEY and IDKEY

• either may be used for validation

• Domains set Key ID := Key Tag and provide both DNSKEY and IDKEY sets

• and provision IDDS/DS where required

Discussion

• Small response sizes due to repurposing RRSIGs

• Sizes of delegations increase during transition

• Adoption can be easily monitored at domains and Internet transit nodes



Relax Absolute Validation Requirements

• Degrade MUST-requirements to SHOULD in RFCs 
4035 and 6840

• Warn about taking the SHOULD requirements literally



Discussion



Questions raised for future DNSSEC

• Can we tolerate waste of low-priority CPU cycles or do we need to apply limits to DNSSEC 
validation?

• Can we manage the complexity induced by the local per-resolution validation limits?

• Are communicated validation budgets the way to go?

• Do we need to outlaw non-unique DNSKEY identification or can we just bare the probability of 
collisions?

• Should we opt for more radical approaches?

• Proof of work from clients?

• Validating DNSSEC only at the client?

• Tighter revision of standards? Increased use of formal methods?


	Standardabschnitt
	Slide 1: Protocol Fixes for KeyTrap Vulnerabilities
	Slide 2: Outline
	Slide 3
	Slide 4: Exploitation of DNSSEC Protocol Design
	Slide 5: DoS by DNSSEC Validation
	Slide 6: Fundamental Problem Exposed by KeyTrap
	Slide 7
	Slide 8: Architectural Containment
	Slide 9: Limiting Cryptographic Operations
	Slide 10: Problems with current per-resolution Limits
	Slide 11: Factors Driving Complexity of Validation
	Slide 12: Factors Driving Complexity of Validation
	Slide 13
	Slide 14: Managing Validation Budgets
	Slide 15: Outlawing KeyTag collisions
	Slide 16: Introducing IDKEY
	Slide 17: Transitioning to IDKEY
	Slide 18: Relax Absolute Validation Requirements
	Slide 19
	Slide 20: Questions raised for future DNSSEC


