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• Efforts in Past Decades

1000+ research publications, multiple products/startups, billions of dollars invested

• Expectations

– Easy to develop ML models for any given problem and target environment

– Abundance of production-ready ML models---ready for high-stake decision-making

• Reality 
– Availability of public datasets dictates choice of learning problem and environment

– Abundance of ML artifacts with high performance in controlled “lab” settings

ML Model(s) for Networks
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Can we Deploy Existing ML Models in 

Production?

Model Generalizability

Issues

Most existing ML models fail to generalize;

not ready for production deployments
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How to Develop Generalizable ML Models for 

Networks?

Training Evaluation
Preprocessing +

Model selectionCIC-IDS

F1-score: 0.99

Standard ML Pipeline
Is this the right data?

Is this model underspecified?

How to collect better data 

at scale?

TTL ≤ 63

classes = [0.84, 0.16]

...

classes = [0.83, 0.0]

...

classes = [0.01, 0.16]

Learning shortcut

Answering these questions is critical for developing 

generalizable ML artifacts for networking
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Data
Training Evaluation

Preprocessing +

Model selection
Deployment

TrusteenetUnicorn
Domain Expert

Analysis results
Data-collection intents

PINOT

• netUnicorn [CCS’23]

Iteratively collect data for any problem and environment

• Trustee [CCS’22]

Explain and analyze ML model’s decision making

• PINOT [ANRW’23]

Transform your production network for data collection

Progress in Past Years
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Data Collection

Fragmented Thin Waist

netUnicorn

netUnicorn: A Flexible Data Collection 

Platform

Simplifies collecting data for any learning problem and 

target network environment
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Limitation of netUnicorn

netUnicorn

Application

Fingerprinting

Application Logic

Network environments

Physical/virtual Network infrastructures

Learning Problems

Flow completion time

prediction

Writing application logic is manual effort

• Collecting data for new application is hard

• Easily breaks over time

How do we scale data collection for new applications?
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• Prior work showed around 70k GitHub 

repositories with containerized applications that 

can generate diverse network traffic.

• We refer to these repositories as Big Code
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Repositories

• Millions of publicly accessible code repositories 

capture diverse application logic

•     GitHub,      Bitbucket, etc.

• Prior work showed around 70k GitHub 

repositories with containerized applications that 

can generate diverse network traffic.

• We refer to these repositories as Big Code

Can we use Big Code to address netUnicorn’s limitation?
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Proposed Solution

netUnicorn

Big Code

netMosaic

Application Logic

Network environments

Physical/virtual Network infrastructures

Learning Problems

Subsumes netUnicorn to leverage Big Code’s 
diverse application logic 
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• Learning problem
Traffic Classification: identify traffic classes based on encrypted packets in a flow

• Data Source
• 16k GitHub repositories

• Labeled data using port numbers 

• Curated Dataset
• 1.7 million flows, 54 million packets, 264 unique services

• Top six services: HTTPS, Redis, PostgreSQL, Eforward, MongoDB, MySQL.

Does it enable curating “better” datasets?
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• Learning problem
Traffic Classification: identify traffic classes based on encrypted packets in a flow

• Data Source
• 16k GitHub repositories

• Labeled data using port numbers 

• Curated Dataset
• 1.7 million flows, 54 million packets, 264 unique services

• Top six services: HTTPS, Redis, PostgreSQL, Eforward, MongoDB, MySQL.

netMosaic CrossMarkets ISCXVPN2016

Number of Flows 1.7 Million 46,179 9,536

netMosaic is able to curate “better” datasets, 

i.e., more diverse and less sparse

Does it enable curating “better” datasets?
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• Data Source
• 256 GitHub repositories

• Datasets
• Source Datasets: Labeled datasets used for model training

 Dataset A: Default setting → Model A

 Dataset B: Low congestion setting → Model B

• Target Dataset: Unlabeled dataset used for assessing generalizability
 Dataset C: High-congestion setting

• Learning Models
• Random Forest, Decision Trees, Logistic Regression, MLP

Does it enable developing “generalizable” 
model?
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Results

Model A Model B

Source Dataset Target Dataset Source Dataset Target Dataset

Random Forest 0.83 0.24 0.81 0.52

Decision Trees 0.81 0.10 0.80 0.28

Logistic Regression 0.23 0.06 0.15 0.14

MLP 0.76 0.07 0.73 0.37

Performance of models trained on Dataset A (Model 

A) and Dataset B (Model B) and tested on unseen Dataset C.
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Using training data collected under more realistic network 

conditions could improve model generalizability



Summary and Outlook
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different network conditions leveraging Big Code and netUnicorn

• Prototype implementation demonstrates ability to curate better 
datasets and generalizable ML models



• Lessons learned

• Our system simplifies collecting data for disparate applications under 
different network conditions leveraging Big Code and netUnicorn

• Prototype implementation demonstrates ability to curate better 
datasets and generalizable ML models

• What’s next?

• Leverage model explainability tools (e.g., Trustee)

• Scale data collection for more repositories

• Improve data quality: address class imbalance issues, filter noisy 
samples

Summary and Outlook
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