UC SANTA BARBARA

NIKSUN

netMosaic

Harnessing Public Code Repositories to Develop Production-Ready ML Artifacts for Networking

Punnal Ismail Khan UC Santa Barbara

ML Model(s) for Networks

Efforts in Past Decades

1000+ research publications, multiple products/startups, billions of dollars invested

ML Model(s) for Networks

Efforts in Past Decades

1000+ research publications, multiple products/startups, billions of dollars invested

Expectations

- Easy to develop ML models for any given problem and target environment
- Abundance of production-ready ML models---ready for high-stake decision-making

ML Model(s) for Networks

Efforts in Past Decades

1000+ research publications, multiple products/startups, billions of dollars invested

Expectations

- Easy to develop ML models for any given problem and target environment
- Abundance of production-ready ML models---ready for high-stake decision-making

Reality

- Availability of **public datasets** dictates choice of learning problem and environment
- Abundance of ML artifacts with high performance in **controlled "lab" settings**

Can we Deploy Existing ML Models in Production?

Problem	Dataset(s)	Model(s)
Detect VPN traffic	Public VPN dataset [20]	1-D CNN [61]
Detect Heartbleed traffic	CIC-IDS-2017 [54]	RF Classifier [54]
Detect Malicious traffic (IDS)	CIC-IDS-2017 [54], Campus dataset	nPrintML [32]
Anomaly Detection	Mirai dataset [44]	Kitsune [44]
OS Fingerprinting	CIC-IDS-2017 [54]	nPrintML [32]
IoT Device Fingerprinting	UNSW-IoT [56]	Iisy [63]
Adaptive Bit-rate	HSDPA Norway [49]	Pensieve [42]

Can we Deploy Existing ML Models in Production?

Model Generalizability

Problem	Dataset(s)	Model(s)	Issues
Detect VPN traffic	Public VPN dataset [20]	1-D CNN [61]	Shortcut learning
Detect Heartbleed traffic	CIC-IDS-2017 [54]	RF Classifier [54]	Out-of-distribution samples
Detect Malicious traffic (IDS)	CIC-IDS-2017 [54], Campus dataset	nPrintML [32]	Spurious correlations
Anomaly Detection	Mirai dataset [44]	Kitsune [44]	Out-of-distribution samples
OS Fingerprinting	CIC-IDS-2017 [54]	nPrintML [32]	Potential out-of-distribution samples
IoT Device Fingerprinting	UNSW-IoT [56]	Iisy [63]	Likely shortcut learning
Adaptive Bit-rate	HSDPA Norway [49]	Pensieve [42]	Potential out-of-distribution samples

Most existing ML models fail to generalize; not ready for production deployments

Standard ML Pipeline

Is this model underspecified?

F1-score: 0.99

Standard ML Pipeline

How to Develop Generalizable ML Models for **Networks**? Learning shortcut

Standard ML Pipeline

Answering these questions is critical for developing generalizable ML artifacts for networking

netUnicorn: A Flexible Data Collection Platform

netUnicorn: A Flexible Data Collection Platform

netUnicorn: A Flexible Data Collection Platform

Simplifies collecting data for any learning problem and target network environment

Limitation of netUnicorn

Application Flow completion time Fingerprinting prediction netUnicorn

Learning Problems

Application Logic

Network environments

Physical/virtual Network infrastructures

Limitation of netUnicorn

Writing application logic is manual effort

- Collecting data for new application is hard
- Easily breaks over time

Network environments

Physical/virtual Network infrastructures

Limitation of netUnicorn

How do we scale data collection for new applications?

Opportunity: Publicly Accessible Code Repositories

- Millions of publicly accessible code repositories capture diverse application logic
 - 🕻 GitHub, 🔽 Bitbucket, etc.
- Prior work showed around 70k GitHub repositories with containerized applications that can generate diverse network traffic.
- We refer to these repositories as **Big Code**

Opportunity: Publicly Accessible Code Repositories

- Millions of publicly accessible code repositories capture diverse application logic
 - 🕻 GitHub, 🔽 Bitbucket, etc.
- Prior work showed around 70k GitHub repositories with containerized applications that can generate diverse network traffic.

Can we use **Big Code** to address netUnicorn's limitation?

Proposed Solution

Learning Problems

Network environments

Physical/virtual Network infrastructures

Proposed Solution

Application Logic

Learning Problems

Network environments

Physical/virtual Network infrastructures

Proposed Solution

Application Logic

Learning Problems

Subsumes netUnicorn to leverage Big Code's diverse application logic

Does it enable curating "better" datasets?

Learning problem

Traffic Classification: identify traffic classes based on encrypted packets in a flow

Data Source

- 16k GitHub repositories
- Labeled data using port numbers

Curated Dataset

- 1.7 million flows, 54 million packets, 264 unique services
- Top six services: HTTPS, Redis, PostgreSQL, Eforward, MongoDB, MySQL.

Does it enable curating "better" datasets?

Learning problem

Traffic Classification: identify traffic classes based on encrypted packets in a flow

Data Source

- 16k GitHub repositories
- Labeled data using port numbers

Curated Dataset

- 1.7 million flows, 54 million packets, 264 unique services
- Top six services: HTTPS, Redis, PostgreSQL, Eforward, MongoDB, MySQL.

	netMosaic	CrossMarkets	ISCXVPN2016
Number of Flows	1.7 Million	46,179	9,536

Does it enable curating "better" datasets?

Learning problem

Traffic Classification: identify traffic classes based on encrypted packets in a flow

Data Source

- 16k GitHub repositories
- Labeled data using port numbers

Curated Dataset

- 1.7 million flows, 54 million packets, 264 unique services
- Top six services: HTTPS, Redis, PostgreSQL, Eforward, MongoDB, MySQL.

netMosaic is able to curate "better" datasets, i.e., more diverse and less sparse

Does it enable developing "generalizable" model?

Data Source

• 256 GitHub repositories

Datasets

- Source Datasets: Labeled datasets used for model training Dataset A: Default setting → Model A Dataset B: Low congestion setting → Model B
- Target Dataset: Unlabeled dataset used for assessing generalizability
 Dataset C: High-congestion setting
- Learning Models
 - Random Forest, Decision Trees, Logistic Regression, MLP

	Model A		Model B	
	Source Dataset	Target Dataset	Source Dataset	Target Dataset
Random Forest				
Decision Trees				
Logistic Regression				
MLP				

	Model A		Model B	
	Source Dataset	Target Dataset	Source Dataset	Target Dataset
Random Forest	0.83			
Decision Trees	0.81			
Logistic Regression	0.23			
MLP	0.76			

	Mod	lel A	Mod	lel B
	Source Dataset	Target Dataset	Source Dataset	Target Dataset
Random Forest	0.83		0.81	
Decision Trees	0.81		0.80	
Logistic Regression	0.23		0.15	
MLP	0.76		0.73	

	Mod	Model A		Model B	
	Source Dataset	Target Dataset	Source Dataset	Target Dataset	
Random Forest	0.83	0.24	0.81		
Decision Trees	0.81	0.10	0.80		
Logistic Regression	0.23	0.06	0.15		
MLP	0.76	0.07	0.73		

	Model A		Model B	
	Source Dataset	Target Dataset	Source Dataset	Target Dataset
Random Forest	0.83	0.24	0.81	0.52
Decision Trees	0.81	0.10	0.80	0.28
Logistic Regression	0.23	0.06	0.15	0.14
MLP	0.76	0.07	0.73	0.37

Performance of models trained on Dataset A (Model A) and Dataset B (Model B) and tested on unseen Dataset C.

	Model A		Model B	
	Source Dataset	Target Dataset	Source Dataset	Target Dataset
Random Forest	0.83	0.24	0.81	0.52
Decision Trees	0.81	0.10	0.80	0.28
Logistic Regression	0.23	0.06	0.15	0.14
MLP	0.76	0.07	0.73	0.37

Using training data collected under more realistic network conditions could **improve model generalizability**

Summary and Outlook

Lessons learned

- Our system simplifies collecting data for disparate applications under different network conditions leveraging Big Code and netUnicorn
- Prototype implementation demonstrates ability to curate better datasets and generalizable ML models

Summary and Outlook

Lessons learned

- Our system simplifies collecting data for disparate applications under different network conditions leveraging Big Code and netUnicorn
- Prototype implementation demonstrates ability to curate better datasets and generalizable ML models

What's next?

- Leverage model explainability tools (e.g., Trustee)
- Scale data collection for more repositories
- Improve data quality: address class imbalance issues, filter noisy samples