
Do Large Language
Models Dream of
Sockets?
Jari Arkko, Martin Klitte, Dag Lindbo (Ericsson)
Jorvas, Finland and Lund/Stockholm, Sweden
{jari.arkko,martin.klitte,dag.lindbo}@ericsson.com

When I grow up,
I want to be a

router

Context and goals

Lots of excitement on generative AI for
• Human languages, chat bots
• Image and video creation
• Programming assistance
• Search and documents

Cool, but not at the heart of things from
a protocol or network engineer
perspective

Context and goals

Lots of excitement on generative AI for
• Human languages, chat bots
• Image and video creation
• Programming assistance
• Search and documents

Cool, but not at the heart of things from
a protocol or network engineer
perspective

What if LLMs were able to also converse
natively in protocol messages?
• There’s multi-modal generative AI and

support for multiple languages
• Could we “speak” protocols, too?

Related Work

What if LLMs were able to also converse
natively in protocol messages?
• There’s multi-modal generative AI and

support for multiple languages
• Could we “speak” protocols, too?

Some pieces of this exist + plenty
of prior work in related topics

Can you generate a byte sequence that represents a DNS message for to
query the IPv4 address of arkko.eu?

Here's a simplified example of what the byte sequence might look like for a
DNS query for the A record of arkko.eu. This example assumes a transaction
ID of 0x1234 and uses the QDCount field to indicate one question.

1234 0100 0001 0000 0000 0000 0000 0561 726b 6b6f 0265 7500 0001 0001

Vision

“Protocol
LLM”

“Take a PCAP file and
drop it into an LLM"

Could we make
something
interesting
happen?

● Explain what is going on
● Generate test data

● Quick prototyping / simulation

Or live sockets,
specification, or, …

Vision Research Approach

Try to understand if this is
feasible, and to what extent

• Test different use cases and
techniques

• Experiment to quantify
suitability in different use
cases and the performance of
different techniques

 Early / in progress

“Protocol
LLM”

“Take a PCAP file and
drop it into an LLM"

Could we make
something
interesting
happen?

● Explain what is going on
● Generate test data

● Quick prototyping / simulation

Or live sockets,
specification, or …

Some Challenges

As an AI, I'm unable to perform real-
time calculations or generate dynamic

content such as calculating a UDP
checksum for a specific packet.

• Complex fields – length, checksum,
encryption, …)

• Protocols are not everything – real
system behavior is not explained by
protocols only

• Security and safety – reading logs or
sending messages, accessing local
resources

• Hallucination – correctness
• Efficiency – cost, energy, speed

System, e.g., a webserver

Disknw Application

Some (Partial) Solutions

• Complex fields – length, checksum,
encryption, …)

• Protocols are not everything – real
system behavior is not explained by
protocols only

• Security and safety – reading logs or
sending messages, accessing local
resources

• Hallucination – correctness
• Efficiency – cost, energy, speed

Some (Partial) Solutions

• Complex fields – length, checksum,
encryption, …)

• Protocols are not everything – real
system behavior is not explained by
protocols only

• Security and safety – reading logs or
sending messages, accessing local
resources

• Hallucination – correctness
• Efficiency – cost, energy, speed

Combining
traditional

tools and AI
Message

parser LLMpackets
symbols

Some (Partial) Solutions

• Complex fields – length, checksum,
encryption, …)

• Protocols are not everything – real
system behavior is not explained by
protocols only

• Security and safety – reading logs or
sending messages, accessing local
resources

• Hallucination – correctness
• Efficiency – cost, energy, speed

System, e.g., a webserver

Disknw Application

observe

Protocols
& configs

& …

Some (Partial) Solutions

• Complex fields – length, checksum,
encryption, …)

• Protocols are not everything – real
system behavior is not explained by
protocols only

• Security and safety – reading logs or
sending messages, accessing local
resources

• Hallucination – correctness
• Efficiency – cost, energy, speed

Limits

Some (Partial) Solutions

• Complex fields – length, checksum,
encryption, …)

• Protocols are not everything – real
system behavior is not explained by
protocols only

• Security and safety – reading logs or
sending messages, accessing local
resources

• Hallucination – correctness
• Efficiency – cost, energy, speed

The right
use cases

Some (Partial) Solutions

• Complex fields – length, checksum,
encryption, …)

• Protocols are not everything – real
system behavior is not explained by
protocols only

• Security and safety – reading logs or
sending messages, accessing local
resources

• Hallucination – correctness
• Efficiency – cost, energy, speed Code generation

Example Use Case:

Diagnostics

Use Case Context: Training traces & Problem traces

Training
traces

LLM

Problem
trace

“The client sent a
faulty message”

AI:
“Due to the unrecognized or invalid HTTP
method ("HAE"), the server responds with
a "400 Bad Request" status code.”

Understanding diagnostics performance

Could we quantify how good LLMs are in this?
We created a set of 78 different messages for a simple, artificial example protocol
We test the ability of the LLM to correctly identify if something was wrong with
the messages
• Human determines if the LLM’s explanation was reasonable

Correct behavior examples
(as PCAP files)

Incorrect behavior; a problem trace
(as PCAP files)

GPT-4

Manual
checking if
diagnosis
results are
correct

An unexpected value in field F in message M

Measure Diagnosis results

Worst
approaches

Best
approaches

Issues correctly
detected 70-80% 90-100%

Test Results

Results vary depending on techniques used, protocol in
question, tests, interpretation, and even runs

Conclusion: diagnosis seem feasible

Good results with either:
1. Input = training & problem traces (in parsed form)
2. Input = specification & problem trace

More work needed – these are only initial tests

Other Results

Simulate/replicate systems
We recorded Apache’s behavior
on HTTP and file system call
interfaces
The LLM learned to itself behave
like a server and it responded to
messages on sockets, read files, ...

E.g., that a “GET /foo.html” message
should lead to opening file
“/var/www/foo.html”
Including when to generate 404s, how
the number of read bytes should
influence Content-Length value, etc.

Difficult to use as a real service
due to reliability (hallucination),
but perhaps useful for
simulation/quick prototyping

Conclusions

We’ve found this exciting

Protocol and system behavior patterns is a
good topic for LLMs

Feasibility for different use cases to be
determined

It is important to apply LLMs for the right
tasks, not necessarily every task

Plenty of research problems to look into,
e.g., better understanding of diagnostics
performance, complex protocols, different
training methods, security, etc.

