Revisiting Compact Routing

Presented by Kevin Fall

(kfall@cmu.edu)

Based on work by/with several others, especially Dmitri Krioukov
Compact Routing

- A **routing scheme** is an algorithm to establish a set of paths in a graph and forwarding data (headers+tables)
 - Path stretch is $p(u,v)/d(u,v)$ where $p(u,v)$ is cost and $d(u,v)$ is minimum cost
 - A scheme’s stretch is \max (path stretches); stretch 1 requires $O(n \log n)$ size
 - So, a fundamental tradeoff exists between stretch and size (tables+headers)
 - A scheme is **compact** if it has tables $< O(n)$, bounded stretch, $O(\log n)$ headers
- Universal CR can have table size $(\sqrt{n})*\log^2 n)$ with stretch ≤ 3 [TZ01]
 - Actually, slightly better than that [Chechik13]
 - Also holds with name independent labels (!) [AGMNT08]
 - And seems to keep most paths near their minimums on Internet AS graphs (!)
 - Graphs with power-law node degree distribution, strong clustering, “small-world” property
 - Stretch seems to be near the optimal (avg 1.1), avg table size 50 (up to 2200) [KFY04]
 - Indeed, *additive stretch* describes CR schemes on scale-free type graphs [BC04]
 - Remains attractive even with historical AS graph evolution [SP12]
So What?

- CR is theoretically attractive, especially for Internet-like graphs
 - Next theory challenge: a scheme (?) with tables $O(n^{1/k})$ with stretch $\leq 2k$
 - Using such schemes for dynamic (edge deleting) graphs at least linear [AGR89]
- Hierarchical routing on Internet-style AS graph is basically hopeless
 - Eg. Locator/ID split doesn’t really help in reducing RT size fundamentally
 - Because both topology-dependent label tables and dictionary updates are needed
- But can a CR protocol be developed for Internet use?
 - Similar to our early-mid 2000’s questions, ‘infinitely scalable’ looks iffy [KFCB07]
 - Communication cost and policy (and maybe processing delay) remain challenges
 - Communication cost for scale-free (and all) graphs routing at least $O(n)$ [KP08]
 - Note: see Stephen Strowes PhD thesis (Glasgow, 2012) which considers this too
- There is one other line of work to consider…
Routing with Greedy Embeddings [PR05]

• Compact routing literature provides strong bounds on size/stretch
 • By considering the topology of the routing graph and its node labels

• Another approach to routing is based on distance in a metric space
 • (M,d) with set M and distance function $d(u,v)$ obeys triangle inequality, etc.
 • Greedy routing (e.g., geo) entails hopping to a “closer to destination” node
 • In a space where node locations are labeled and neighbor distance is computable
 • But this doesn’t always work due to “dead ends” (see GPSR and face routing)

• It is possible to embed a topology and greedy route in some spaces
 • Such that reachability in the topology graph is *fully* maintained in the space
 • Not generally possible in Euclidean space, but *is so* in Hyperbolic [K07]
 • More to say, but see, for example: PIE protocol [HWT11; updated in 2013]
 • And even more recently, Forrest Routing [Houthooft et al 2015] and GZR [SWL15]
References

[KFBC07] D. Krioukov, K. Fall, A. Brady, K Claffy, On Compact Routing for the Internet, CCR July 2007
Copyright 2015 Carnegie Mellon University

This material is based upon work funded and supported by the Department of Defense under Contract No. FA8721-05-C-0003 with Carnegie Mellon University for the operation of the Software Engineering Institute, a federally funded research and development center.

NO WARRANTY. THIS CARNEGIE MELLON UNIVERSITY AND SOFTWARE ENGINEERING INSTITUTE MATERIAL IS FURNISHED ON AN “AS-IS” BASIS. CARNEGIE MELLON UNIVERSITY MAKES NO WARRANTIES OF ANY KIND, EITHER EXPRESSED OR IMPLIED, AS TO ANY MATTER INCLUDING, BUT NOT LIMITED TO, WARRANTY OF FITNESS FOR PURPOSE OR MERCHANTABILITY, EXCLUSIVITY, OR RESULTS OBTAINED FROM USE OF THE MATERIAL. CARNEGIE MELLON UNIVERSITY DOES NOT MAKE ANY WARRANTY OF ANY KIND WITH RESPECT TO FREEDOM FROM PATENT, TRADEMARK, OR COPYRIGHT INFRINGEMENT.

This material has been approved for public release and unlimited distribution except as restricted below.

This material may be reproduced in its entirety, without modification, and freely distributed in written or electronic form without requesting formal permission. Permission is required for any other use. Requests for permission should be directed to the Software Engineering Institute at permission@sei.cmu.edu.

DM-0002976